Person: GÜMÜŞ, METİN
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
GÜMÜŞ
First Name
METİN
Name
9 results
Search Results
Now showing 1 - 9 of 9
Publication Metadata only Impact of compression ratio and injection parameters on the performance and emissions of a DI diesel engine fueled with biodiesel-blended diesel fuel(PERGAMON-ELSEVIER SCIENCE LTD, 2011) SAYIN, CENK; Sayin, Cenk; Gumus, MetinThis work investigates the influence of compression ratio (CR) and injection parameters such injection timing (IT) and injection pressure (IP) on the performance and emissions of a DI diesel engine using biodiesel (%5, 20%, 50%, and 100%) blended-diesel fuel. Tests were carried out using three different CRs (17, 18, and 19/1), ITs (15 degrees, 20 degrees, and 25 degrees CA BTDC) and IPs (18, 20 and 22 MPa) at 20 N m engine load and 2200 rpm. The results showed that brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC), and nitrogen oxides (NOx) emissions increased while brake thermal efficiency (BTE), smoke opacity (OP), carbon monoxide (CO) and hydrocarbon (HC) decreased with the increase in the amount of biodiesel in the fuel mixture. The best results for BSFC, BSEC and BTE were observed at increased the CR, IP, and original IT. For the all tested fuels, an increase in IP, IT and CR leaded to decrease in the OP. CO and MC emissions while NO emissions increase. (C) 2011 Elsevier Ltd. All rights reserved.Publication Metadata only The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel-diesel fuel blends(ELSEVIER SCI LTD, 2012) SAYIN, CENK; Gumus, Metin; Sayin, Cenk; Canakci, MustafaIn this study, the effects of fuel injection pressure on the exhaust emissions and brake specific fuel consumption (BSFC) of a direct injection (DI) diesel engine have been discussed. The engine was fueled with biodiesel-diesel blends when running the engine at four different fuel injection pressures (18, 20, 22, and 24 MPa) and four different engine loads in terms of mean effective pressure (12.5, 25, 37.5, and 50 kPa). The results confirmed that the BSFC, carbon dioxide (CO2), nitrogen oxides (NOx) and oxygen (O-2) emission increased, smoke opacity, unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions decreased due to the fuel properties and combustion characteristics of biodiesel. On the other hand, the increased injection pressure caused to decrease in BSFC of high percentage biodiesel-diesel blends (such as B20, B50, and B100), smoke opacity, the emissions of CO, UHC and increased the emissions of CO2, O-2 and NOx. The increased or decreased injection pressure caused to increase in BSFC values compared to original (ORG) injection pressure for diesel fuel and low percentage biodiesel-diesel blends (B5). (C) 2011 Elsevier Ltd. All rights reserved.Publication Metadata only Effect of fuel injection pressure on the injection, combustion and performance characteristics of a DI diesel engine fueled with canola oil methyl esters-diesel fuel blends(PERGAMON-ELSEVIER SCIENCE LTD, 2012) SAYIN, CENK; Sayin, Cenk; Gumus, Metin; Canakci, MustafaIn this study, the influence of injection pressure on the injection, combustion and performance characteristics of a single cylinder, four stroke, direct injection, naturally aspirated diesel engine has been experimentally investigated when using canola oil methyl esters (COME) and its blends with diesel fuel. The tests were conducted for four different injection pressures (18, 20, 22 and 24 MPa) at constant engine speed and different loads. The experimental results showed that the fuels exhibit different injection, combustion and performance characteristics for different engine loads and injection pressure. Investigation on the injection characteristics of the fuels showed that using COME instead of diesel resulted in earlier injection timings. The maximum cylinder pressure, the maximum rate of pressure rise and the maximum heat release rate are slightly lower for COME and its blends. The brake specific fuel consumption and brake specific energy consumption for COME are higher than that for diesel fuel while brake thermal efficiency of COME is generally lower than that of diesel fuel. The increased injection pressure gave better results for brake specific fuel consumption and brake thermal efficiency compared to the original and decreased injection pressures. (C) 2012 Elsevier Ltd. All rights reserved.Publication Metadata only Power and Efficiency Analysis of Diesel Cycle Under Alternative Criteria(SPRINGER HEIDELBERG, 2014) GÜMÜŞ, METİN; Atmaca, Mustafa; Gumus, MetinModel studies of the internal combustion engine cycles are useful for illustrating some important parameters affecting engine performance. The Diesel cycle is considered as a special case of an internal combustion engine. In the diesel cycle, combustion is controlled in order to obtain constant pressure at the beginning of the expansion stroke. It is important to choose the proper optimization criterion for the optimum design of the internal combustion engines. The choice of optimization criterion can be changed depending on the purpose of engine design and working conditions of the internal combustion engine. In this study, a comparative performance analysis is carried out for a reversible air standard Diesel cycle based on three alternative performance criteria, namely, maximum power (mp), maximum power density (mpd) and maximum efficient power (mep). The effects of the design parameters such as volume ratio and extreme temperature ratio of the cycle have been investigated under mp, mpd, mep and maximum efficiency conditions. The results show that the design parameters at mep conditions lead to more efficient engines than that at the mp conditions and that the mep criterion may have a significant power advantage compared to mpd criterion.Publication Open Access A research on biogas-diesel dual fuel diesel engine(GAZI UNIV, FAC ENGINEERING ARCHITECTURE, 2017-09-07) YILMAZ, İLKER TURGUT; Yilmaz, Ilker Turgut; Gumus, MetinIn the present study, cylinder pressures, brake specific fuel consumptions and exhaust emissions of a dual fuel diesel engine used biogas (% 60 CH4-% 40 CO2) as main fuel was examined experimentally. Experiments were conducted at 1750 rpm under 50 Nm, 75 Nm and 100 Nm loads. Results showed that biogas could be used in diesel engines for reducing soot emissions. HC emissions and maximum cylinder pressures increased for all engine loads with using biogas in diesel engine. NOx emission decreased at low engine load but increased depending on the rise of engine load. The modifications such as adjusting injection timing, decreasing compression ratio and using different lubrication oils can be used for not only increasing performance but also lowering exhaust emissions of a biogas-diesel dual fuel engine.Publication Metadata only Influence of injector hole number on the performance and emissions of a DI diesel engine fueled with biodiesel-diesel fuel blends(PERGAMON-ELSEVIER SCIENCE LTD, 2013) SAYIN, CENK; Sayin, Cenk; Gumus, Metin; Canakci, MustafaIn diesel engines, fuel atomization process strongly affects the combustion and emissions. Injector hole number (INHN) particular influence on the performance and emissions because both parameters take important influence on the spray parameters like droplet size and penetration length and thus on the combustion process. Therefore, the INHN effects on the performance and emissions of a diesel engine using biodiesel and its blends were experimentally investigated by running the engine at four different engine loads in terms of brake mean effective pressure (BMEP) (12.5, 25, 37.5 and, 50 kPa). The injector nozzle hole size and number included 340 x 2 (340 mu m diameter holes with 2 holes in the nozzle), 240 x 4, 200 x 6, and 170 x 8. The results verified that the brake specific fuel consumption (BSFC), carbon dioxide (CO2) and nitrogen oxides (NOx) emission increased, smoke opacity (SO), hydrocarbon (HC) and carbon monoxide (CO) emissions reduced due to the fuel properties and combustion characteristics of biodiesel. However, the increased INHN caused a decrease in BSFC at the use of high percentage biodiesel diesel blends (B50 and B100), SO and the emissions of CO, HC. The emissions of CO2 and NOx increased. Compared to the original (ORG) INHN, changing the INHN caused an increase in BSFC values for diesel fuel and low percentage biodiesel-diesel blends (B5 and B20). (C) 2013 Elsevier Ltd. All rights reserved.Publication Metadata only Effect of Fuel Injection Timing on the Emissions of a Direct-Injection (DI) Diesel Engine Fueled with Canola Oil Methyl Ester-Diesel Fuel Blends(AMER CHEMICAL SOC, 2010) SAYIN, CENK; Sayin, Cenk; Gumus, Metin; Canakci, MustafaBiodiesel is the name of a clean burning monoalkyl-ester-based oxygenated fuel made from natural, renewable sources, such as new/used vegetable oils and animal fats. The injection timing plays an important role in determining engine performance, especially pollutant emissions. In this study, the effects of fuel injection timing on the exhaust emission characteristics of a single-cylinder, direct-injection diesel engine were investigated when it was fueled with canola oil methyl ester diesel fuel blends. The results showed that the brake-specific fuel consumption and carbon dioxide and nitrogen oxide emissions increased and smoke opacity, hydrocarbon, and carbon monoxide emissions decreased because of the fuel properties and combustion characteristics of canola oil methyl ester. The effect of injection timing on the exhaust emissions of the engine exhibited the similar trends for diesel fuel and canola oil methyl ester diesel blends. When the results are compared to those of original (ORG) injection timing, at the retarded injection timings, the emissions of nitrogen oxide and carbon dioxide increased and the smoke opacity and the emissions of hydrocarbon and carbon monoxide decreased for all test conditions. On the other hand, with the advanced injection timings, the smoke opacity and the emissions of hydrocarbon and carbon monoxide diminished and the emissions of nitrogen oxide and carbon dioxide boosted for all test conditions. In terms of brake-specific fuel consumption, the best results were obtained from ORG injection timing in all fuel blends.Publication Metadata only Exergetic analysis of an LPG evaporator/regulator with thermal storage(PERGAMON-ELSEVIER SCIENCE LTD, 2017) GÜMÜŞ, METİN; Ugurlu, Adem; Gumus, MetinIn this study, the efficiency of an LPG evaporator/regulator (E/R) is investigated on both energy and exergy concept. The E/R, which is a key part of LPG conversion systems that enables gasoline engines to be operated on LPG when desired, has been transformed to a thermal energy storage (TES) system using an adequate amount of phase change material (PCM) to be able to store waste energy of the engine coolant, so that the engine can be operated on LPG rather than gasoline even at cold start to decrease fuel consumption and exhaust emissions. The engine has been tested at idle speed at 4 degrees C environment temperature. The PCM application provided the engine to be operated on LPG at cold start and increased the efficiency of the E/R in a considerable extent on both energy and exergy bases. It was observed that using PCM in the E/R for thermal storage, the net efficiency differences of the E/R with PCM application reach to the values of 20% and 10%, respectively for the energy and exergy calculations. The net 2nd law efficiencies were lower than the ones that of 1st law with the values of about 11% for gasoline operation, and 8% for LPG operation of the engine. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Publication Metadata only Effect of Fuel Injection Timing on the Injection, Combustion, and Performance Characteristics of a Direct-Injection (DI) Diesel Engine Fueled with Canola Oil Methyl Ester-Diesel Fuel Blends(AMER CHEMICAL SOC, 2010) SAYIN, CENK; Gumus, Metin; Sayin, Cenk; Canakci, MustafaIn the last 3 decades, the search for alternative and renewable fuels, which have to be not only sustainable but also friendly with respect to the environment and techno-economically competitive, has gained importance because of the increasing environmental concerns and depletion in petroleum resources. Therefore, in this study, the influence of injection timing on the injection, combustion, and performance characteristics of a single-cylinder, four-stroke, direct-injection, naturally aspirated diesel engine has been experimentally investigated when using canola oil methyl ester (COME) and its blends with diesel fuel. The tests were conducted for three different injection timings [15 degrees, 20 degrees, and 25 degrees crank angle (CA) before top dead center (BTDC] at constant engine speed and different loads. The experimental test results showed that, because of the different properties of COME and diesel, both fuels exhibit different injection, combustion, and performance characteristics for different engine loads and injection timing. Investigation of injection characteristics of the fuels showed that using COME instead of diesel resulted in earlier injection timings. The maximum cylinder pressure, the maximum rate of pressure rise, and the maximum heat release rate are slightly lower, while the ignition timing is higher for COME and its blends for all loads and injection timings. The brake-specific fuel consumption for COME is higher than that of diesel fuel, while the brake thermal efficiency of COME is lower than that of diesel fuel. The original injection timing gave the best results for brake-specific fuel consumption, brake-specific energy consumption, and brake thermal efficiency compared to the advanced and retarded injection timings.