Person:
GÜMÜŞ, METİN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

GÜMÜŞ

First Name

METİN

Name

Search Results

Now showing 1 - 10 of 13
  • Publication
    Impact of compression ratio and injection parameters on the performance and emissions of a DI diesel engine fueled with biodiesel-blended diesel fuel
    (PERGAMON-ELSEVIER SCIENCE LTD, 2011) SAYIN, CENK; Sayin, Cenk; Gumus, Metin
    This work investigates the influence of compression ratio (CR) and injection parameters such injection timing (IT) and injection pressure (IP) on the performance and emissions of a DI diesel engine using biodiesel (%5, 20%, 50%, and 100%) blended-diesel fuel. Tests were carried out using three different CRs (17, 18, and 19/1), ITs (15 degrees, 20 degrees, and 25 degrees CA BTDC) and IPs (18, 20 and 22 MPa) at 20 N m engine load and 2200 rpm. The results showed that brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC), and nitrogen oxides (NOx) emissions increased while brake thermal efficiency (BTE), smoke opacity (OP), carbon monoxide (CO) and hydrocarbon (HC) decreased with the increase in the amount of biodiesel in the fuel mixture. The best results for BSFC, BSEC and BTE were observed at increased the CR, IP, and original IT. For the all tested fuels, an increase in IP, IT and CR leaded to decrease in the OP. CO and MC emissions while NO emissions increase. (C) 2011 Elsevier Ltd. All rights reserved.
  • Publication
    Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol-Diesel Fuel Blends at Different Injection Timings
    (AMER CHEMICAL SOC, 2008) SAYIN, CENK; Canakci, Mustafa; Sayin, Cenk; Gumus, Metin
    In the recent years, environmental concerns and depletion in petroleum resources have forced researchers to concentrate on finding renewable alternatives to conventional petroleum fuels. Therefore, alcohols as renewable and alternative energy sources for the diesel engines gain importance. For this reason, in this study, the performance, exhaust emissions, and combustion characteristics of a single cylinder diesel engine have been experimentally investigated under different injection timings when methanol-blended diesel fuel was used from 0 to 15%, with an increment of 5%. The tests were conducted at three different injection timings (15 degrees, 20 degrees, and 25 degrees CA BTDC) by changing the thickness of advance shim. All tests were conducted at four different loads (5, 10, 15, and 20 Nm) at constant engine speed of 2200 rpm. The experimental test results showed that BSFC, BSEC, combustion efficiency, and NOx and CO2 emissions increased as BTE, rate of heat release, peak cylinder pressure, smoke number, and CO and UHC emissions decreased with an increasing amount of methanol in the fuel blend. In comparison to the values at the original injection timing (20 degrees CA BTDC), the values at the retarded injection timing (15 degrees CA BTDC) of peak cylinder pressure, rate of heat release, combustion efficiency, and NOx and CO2 emissions decreased, while smoke number and UHC and CO emissions increased at all test conditions. On the other hand, The advanced injection timing (25 degrees CA BTDC), smoke number, and UHC and CO emissions diminished and peak cylinder pressure, rate of heat release, combustion efficiency, and NOx and CO2 emissions increased at all test conditions. In terms of BSFC, BSEC, and BTE, retarded and advanced injection timings gave negative results in all fuel blends compared to original injection timing.
  • Publication
    Effect of injection timing on the exhaust emissions of a diesel engine using diesel-methanol blends
    (PERGAMON-ELSEVIER SCIENCE LTD, 2009) SAYIN, CENK; Sayin, Cenk; Ilhan, Murat; Canakci, Mustafa; Gumus, Metin
    Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15 degrees, 20 degrees and 25 degrees CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NOx and CO2 emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NOx and CO2 emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 CA BTDC). On the other hand, with the advanced injection timing (25 degrees CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NOx and CO2 emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads. (c) 2008 Elsevier Ltd. All rights reserved.
  • Publication
    The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel-diesel fuel blends
    (ELSEVIER SCI LTD, 2012) SAYIN, CENK; Gumus, Metin; Sayin, Cenk; Canakci, Mustafa
    In this study, the effects of fuel injection pressure on the exhaust emissions and brake specific fuel consumption (BSFC) of a direct injection (DI) diesel engine have been discussed. The engine was fueled with biodiesel-diesel blends when running the engine at four different fuel injection pressures (18, 20, 22, and 24 MPa) and four different engine loads in terms of mean effective pressure (12.5, 25, 37.5, and 50 kPa). The results confirmed that the BSFC, carbon dioxide (CO2), nitrogen oxides (NOx) and oxygen (O-2) emission increased, smoke opacity, unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions decreased due to the fuel properties and combustion characteristics of biodiesel. On the other hand, the increased injection pressure caused to decrease in BSFC of high percentage biodiesel-diesel blends (such as B20, B50, and B100), smoke opacity, the emissions of CO, UHC and increased the emissions of CO2, O-2 and NOx. The increased or decreased injection pressure caused to increase in BSFC values compared to original (ORG) injection pressure for diesel fuel and low percentage biodiesel-diesel blends (B5). (C) 2011 Elsevier Ltd. All rights reserved.
  • Publication
    Efficiency of an Otto engine under alternative power optimizations
    (JOHN WILEY & SONS LTD, 2009) GÜMÜŞ, METİN; Gumus, Metin; Atmaca, Mustafa; Yimaz, Tamer
    The proper optimization criterion to be chosen for the optimum design of the heat engines may differ depending on their purposes and working conditions. In this study, a comparative performance analysis is carried out for a reversible Otto cycle based on three alternative performance criteria namely maximum power (mp), maximum power density (mpd) and maximum efficient power (mep). The power density criterion is defined as the power per minimum specific volume in the cycle and the efficient power criterion is defined as multiplication of the power by the efficiency of the Otto cycle. Maximizing the efficient power gives a compromise between power and efficiency. Three different objective functions are defined and maximization of these functions is carried out under different design parameters of the Otto engine. The variations of power, power density and efficient power outputs are derived and presented with respect to the thermal efficiency of the cycle for various temperature ratios. It has been found that the design parameters at mep conditions lead to more efficient engines than that at the mp condition and the mep criterion may have a significant power advantage compared with mpd criterion. Copyright (C) 2009 John Wiley & Sons, Ltd.
  • Publication
    Effect of fuel injection pressure on the injection, combustion and performance characteristics of a DI diesel engine fueled with canola oil methyl esters-diesel fuel blends
    (PERGAMON-ELSEVIER SCIENCE LTD, 2012) SAYIN, CENK; Sayin, Cenk; Gumus, Metin; Canakci, Mustafa
    In this study, the influence of injection pressure on the injection, combustion and performance characteristics of a single cylinder, four stroke, direct injection, naturally aspirated diesel engine has been experimentally investigated when using canola oil methyl esters (COME) and its blends with diesel fuel. The tests were conducted for four different injection pressures (18, 20, 22 and 24 MPa) at constant engine speed and different loads. The experimental results showed that the fuels exhibit different injection, combustion and performance characteristics for different engine loads and injection pressure. Investigation on the injection characteristics of the fuels showed that using COME instead of diesel resulted in earlier injection timings. The maximum cylinder pressure, the maximum rate of pressure rise and the maximum heat release rate are slightly lower for COME and its blends. The brake specific fuel consumption and brake specific energy consumption for COME are higher than that for diesel fuel while brake thermal efficiency of COME is generally lower than that of diesel fuel. The increased injection pressure gave better results for brake specific fuel consumption and brake thermal efficiency compared to the original and decreased injection pressures. (C) 2012 Elsevier Ltd. All rights reserved.
  • Publication
    Optimization of Irreversible Cogeneration Systems under Alternative Performance Criteria
    (SPRINGER/PLENUM PUBLISHERS, 2009) İNAN, AHMET TALAT; Atmaca, M.; Gumus, M.; Inan, A. T.; Yilmaz, T.
    In this study, an exergy optimization has been performed for a cogeneration plant consisting of an irreversible Carnot heat engine. In the analysis, different objective functions have been defined based on alternative performance criteria and the optimum values of the design parameters of a cogeneration cycle were determined for different criteria. In this context, the effects of irreversibilities on the exergetic performance are investigated, and the results are discussed.
  • Publication
    Power and Efficiency Analysis of Diesel Cycle Under Alternative Criteria
    (SPRINGER HEIDELBERG, 2014) GÜMÜŞ, METİN; Atmaca, Mustafa; Gumus, Metin
    Model studies of the internal combustion engine cycles are useful for illustrating some important parameters affecting engine performance. The Diesel cycle is considered as a special case of an internal combustion engine. In the diesel cycle, combustion is controlled in order to obtain constant pressure at the beginning of the expansion stroke. It is important to choose the proper optimization criterion for the optimum design of the internal combustion engines. The choice of optimization criterion can be changed depending on the purpose of engine design and working conditions of the internal combustion engine. In this study, a comparative performance analysis is carried out for a reversible air standard Diesel cycle based on three alternative performance criteria, namely, maximum power (mp), maximum power density (mpd) and maximum efficient power (mep). The effects of the design parameters such as volume ratio and extreme temperature ratio of the cycle have been investigated under mp, mpd, mep and maximum efficiency conditions. The results show that the design parameters at mep conditions lead to more efficient engines than that at the mp conditions and that the mep criterion may have a significant power advantage compared to mpd criterion.
  • PublicationOpen Access
    A research on biogas-diesel dual fuel diesel engine
    (GAZI UNIV, FAC ENGINEERING ARCHITECTURE, 2017-09-07) YILMAZ, İLKER TURGUT; Yilmaz, Ilker Turgut; Gumus, Metin
    In the present study, cylinder pressures, brake specific fuel consumptions and exhaust emissions of a dual fuel diesel engine used biogas (% 60 CH4-% 40 CO2) as main fuel was examined experimentally. Experiments were conducted at 1750 rpm under 50 Nm, 75 Nm and 100 Nm loads. Results showed that biogas could be used in diesel engines for reducing soot emissions. HC emissions and maximum cylinder pressures increased for all engine loads with using biogas in diesel engine. NOx emission decreased at low engine load but increased depending on the rise of engine load. The modifications such as adjusting injection timing, decreasing compression ratio and using different lubrication oils can be used for not only increasing performance but also lowering exhaust emissions of a biogas-diesel dual fuel engine.
  • Publication
    Influence of injector hole number on the performance and emissions of a DI diesel engine fueled with biodiesel-diesel fuel blends
    (PERGAMON-ELSEVIER SCIENCE LTD, 2013) SAYIN, CENK; Sayin, Cenk; Gumus, Metin; Canakci, Mustafa
    In diesel engines, fuel atomization process strongly affects the combustion and emissions. Injector hole number (INHN) particular influence on the performance and emissions because both parameters take important influence on the spray parameters like droplet size and penetration length and thus on the combustion process. Therefore, the INHN effects on the performance and emissions of a diesel engine using biodiesel and its blends were experimentally investigated by running the engine at four different engine loads in terms of brake mean effective pressure (BMEP) (12.5, 25, 37.5 and, 50 kPa). The injector nozzle hole size and number included 340 x 2 (340 mu m diameter holes with 2 holes in the nozzle), 240 x 4, 200 x 6, and 170 x 8. The results verified that the brake specific fuel consumption (BSFC), carbon dioxide (CO2) and nitrogen oxides (NOx) emission increased, smoke opacity (SO), hydrocarbon (HC) and carbon monoxide (CO) emissions reduced due to the fuel properties and combustion characteristics of biodiesel. However, the increased INHN caused a decrease in BSFC at the use of high percentage biodiesel diesel blends (B50 and B100), SO and the emissions of CO, HC. The emissions of CO2 and NOx increased. Compared to the original (ORG) INHN, changing the INHN caused an increase in BSFC values for diesel fuel and low percentage biodiesel-diesel blends (B5 and B20). (C) 2013 Elsevier Ltd. All rights reserved.