Person:
GÜMÜŞ, METİN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

GÜMÜŞ

First Name

METİN

Name

Search Results

Now showing 1 - 6 of 6
  • Publication
    Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol-Diesel Fuel Blends at Different Injection Timings
    (AMER CHEMICAL SOC, 2008) SAYIN, CENK; Canakci, Mustafa; Sayin, Cenk; Gumus, Metin
    In the recent years, environmental concerns and depletion in petroleum resources have forced researchers to concentrate on finding renewable alternatives to conventional petroleum fuels. Therefore, alcohols as renewable and alternative energy sources for the diesel engines gain importance. For this reason, in this study, the performance, exhaust emissions, and combustion characteristics of a single cylinder diesel engine have been experimentally investigated under different injection timings when methanol-blended diesel fuel was used from 0 to 15%, with an increment of 5%. The tests were conducted at three different injection timings (15 degrees, 20 degrees, and 25 degrees CA BTDC) by changing the thickness of advance shim. All tests were conducted at four different loads (5, 10, 15, and 20 Nm) at constant engine speed of 2200 rpm. The experimental test results showed that BSFC, BSEC, combustion efficiency, and NOx and CO2 emissions increased as BTE, rate of heat release, peak cylinder pressure, smoke number, and CO and UHC emissions decreased with an increasing amount of methanol in the fuel blend. In comparison to the values at the original injection timing (20 degrees CA BTDC), the values at the retarded injection timing (15 degrees CA BTDC) of peak cylinder pressure, rate of heat release, combustion efficiency, and NOx and CO2 emissions decreased, while smoke number and UHC and CO emissions increased at all test conditions. On the other hand, The advanced injection timing (25 degrees CA BTDC), smoke number, and UHC and CO emissions diminished and peak cylinder pressure, rate of heat release, combustion efficiency, and NOx and CO2 emissions increased at all test conditions. In terms of BSFC, BSEC, and BTE, retarded and advanced injection timings gave negative results in all fuel blends compared to original injection timing.
  • Publication
    Assessment of combustion and exhaust emissions in a common-rail diesel engine fueled with methane and hydrogen/methane mixtures under different compression ratio
    (PERGAMON-ELSEVIER SCIENCE LTD, 2020) YILMAZ, İLKER TURGUT; Sanli, Ali; Yilmaz, Ilker Turgut; Gumus, Metin
    This study investigates the potential usage of the methane and hydrogen enriched methane in a turbocharged common-rail direct injection diesel engine. Methane and hydrogen/methane mixtures are sent through the air intake manifold of the engine. The engine is operated at four different loads and three different compression ratios. Results are compared amongst single diesel and dual-fuel operations at different compression ratios and load conditions. Compared to diesel, dual-fuel operations mostly generate higher and advanced peak in-cylinder gas pressure, more combustion noise, late pilot injection and start of combustion, advanced combustion center, substantial variations at ignition delay and combustion duration, a significant increase in cyclic variations at low and medium loads, and earlier heat release. Hydrogen enrichment decreases evidently specific fuel consumption. Concerning emissions, compared to diesel operation, dual-fuel operations produce higher total hydrocarbon (THC) and nitrogen oxides (NOx) but lower carbon dioxide (CO2). Hydrogen substitutions decrease THC and CO2 emissions of methane dual-fuel operations approximately between 9-29% and 1-32%, respectively. Smoke emission of dual-fuel operations is less than that of diesel at low and medium loads, whereas it sharply increases at high load. Knocking occurs at high compression ratio and load conditions with dual-fuel operations and dramatically increases with increasing hydrogen ratio. Decreasing the compression ratio notably reduces the combustion noise as well as some emissions, such as NOx, CO2 and smoke, for entire load ranges of dual-fuel and diesel operations. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Publication
    Effect of injection timing on the exhaust emissions of a diesel engine using diesel-methanol blends
    (PERGAMON-ELSEVIER SCIENCE LTD, 2009) SAYIN, CENK; Sayin, Cenk; Ilhan, Murat; Canakci, Mustafa; Gumus, Metin
    Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15 degrees, 20 degrees and 25 degrees CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NOx and CO2 emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NOx and CO2 emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 CA BTDC). On the other hand, with the advanced injection timing (25 degrees CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NOx and CO2 emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads. (c) 2008 Elsevier Ltd. All rights reserved.
  • Publication
    The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel-diesel fuel blends
    (ELSEVIER SCI LTD, 2012) SAYIN, CENK; Gumus, Metin; Sayin, Cenk; Canakci, Mustafa
    In this study, the effects of fuel injection pressure on the exhaust emissions and brake specific fuel consumption (BSFC) of a direct injection (DI) diesel engine have been discussed. The engine was fueled with biodiesel-diesel blends when running the engine at four different fuel injection pressures (18, 20, 22, and 24 MPa) and four different engine loads in terms of mean effective pressure (12.5, 25, 37.5, and 50 kPa). The results confirmed that the BSFC, carbon dioxide (CO2), nitrogen oxides (NOx) and oxygen (O-2) emission increased, smoke opacity, unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions decreased due to the fuel properties and combustion characteristics of biodiesel. On the other hand, the increased injection pressure caused to decrease in BSFC of high percentage biodiesel-diesel blends (such as B20, B50, and B100), smoke opacity, the emissions of CO, UHC and increased the emissions of CO2, O-2 and NOx. The increased or decreased injection pressure caused to increase in BSFC values compared to original (ORG) injection pressure for diesel fuel and low percentage biodiesel-diesel blends (B5). (C) 2011 Elsevier Ltd. All rights reserved.
  • Publication
    Investigation of combustion and emission characteristics in a TBC diesel engine fuelled with CH4-CO2-H-2 mixtures
    (PERGAMON-ELSEVIER SCIENCE LTD, 2021) YILMAZ, İLKER TURGUT; Sanli, Ali; Yilmaz, Ilker Turgut; Gumus, Metin
    In this study, an experimental investigation was performed to reveal combustion and emission characteristics of common-rail four-cylinder diesel engine run with CH4, CO2 and H-2 mixtures. The engine pistons were thermally coated with zirconia and Ni-Al bond coat by plasma spray method. With a small amount of the pilot diesel, port fuelled methane (100% CH4), synthetic biogas (80% CH4 + 20% CO2), and hydrogen presented (80% CH4+10% CO2+10% H-2) mixtures were used as main fuel at different loads (50 Nm, 75 Nm, and 100 Nm) at a constant speed of 1750 min(-1). Comparative analysis of the combustion (cylinder pressure, PRR, HRR, CHR, ringing intensity, CA10, CA50, and CA90), BSFC, and emissions (CO2, HC, NOx, smoke, and oxygen) at the various engine loads with and without piston coating was made for all fuel combinations. It was found that coating the engine pistons enhanced the examining combustion characteristics, whereas it slightly changed BSFC and most of the emissions. As compared to the sole diesel fuel, the gaseous fuel operations showed higher in-cylinder pressure, PRR, and ringing intensity values, earlier combustion starting and CAs, and lower diesel injection pressure at the same engine operating conditions. Dramatic increase in the ringing intensity was particularly found by the hydrogen introduced mixture under the tests with coated piston. HC and CO2 emissions increased in operation with the synthetic biogas; however, hydrogen introduction reduced HC emissions by 4.97-30.92%, and CO2 emissions by 5.16-10%. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Publication
    Effect of Fuel Injection Timing on the Emissions of a Direct-Injection (DI) Diesel Engine Fueled with Canola Oil Methyl Ester-Diesel Fuel Blends
    (AMER CHEMICAL SOC, 2010) SAYIN, CENK; Sayin, Cenk; Gumus, Metin; Canakci, Mustafa
    Biodiesel is the name of a clean burning monoalkyl-ester-based oxygenated fuel made from natural, renewable sources, such as new/used vegetable oils and animal fats. The injection timing plays an important role in determining engine performance, especially pollutant emissions. In this study, the effects of fuel injection timing on the exhaust emission characteristics of a single-cylinder, direct-injection diesel engine were investigated when it was fueled with canola oil methyl ester diesel fuel blends. The results showed that the brake-specific fuel consumption and carbon dioxide and nitrogen oxide emissions increased and smoke opacity, hydrocarbon, and carbon monoxide emissions decreased because of the fuel properties and combustion characteristics of canola oil methyl ester. The effect of injection timing on the exhaust emissions of the engine exhibited the similar trends for diesel fuel and canola oil methyl ester diesel blends. When the results are compared to those of original (ORG) injection timing, at the retarded injection timings, the emissions of nitrogen oxide and carbon dioxide increased and the smoke opacity and the emissions of hydrocarbon and carbon monoxide decreased for all test conditions. On the other hand, with the advanced injection timings, the smoke opacity and the emissions of hydrocarbon and carbon monoxide diminished and the emissions of nitrogen oxide and carbon dioxide boosted for all test conditions. In terms of brake-specific fuel consumption, the best results were obtained from ORG injection timing in all fuel blends.