Person: GÜMÜŞ, METİN
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
GÜMÜŞ
First Name
METİN
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Investigation of heat transfer in combustion chamber of a direct injection diesel engine under different compression ratios and engine torques(2022-01-01) GÜMÜŞ, METİN; Sanli A., GÜMÜŞ M.The heat transfer between gases and combustion chamber walls is an important issue because of affecting the emissions and engine performance. On the other hand, there are a number of engine operation parameters impacting on the in-cylinder heat transfer. Of these parameters, compression ratio and engine torque are of significant influence on the engine heat transfer. For this reason, in this study the effects of compression ratio and engine torque on the heat transfer between gases and combustion chamber walls in a compression ignition engine were studied. The most used correlations such as Hohenberg, Woschni, Nusselt, Eichelberg, and Sitkei-Ramanaiah were used to calculate the overall convective heat transfer coefficient in the combustion chamber. Moreover, various heat transfer characteristics (heat flux, heat loss in combustion chamber parts, heat transfer rate) were evaluated in this study. In the performed study, it was shown that compression ratio and engine torque affected significantly the heat transfer coefficient and heat flux. While heat transfer characteristics calculated by Sitkei-Ramanaiah correlation had the highest value, Eichelberg correlation had the lowest values. The most transferred heat among the combustion chamber parts occurred in the piston.Publication Open Access A research on biogas-diesel dual fuel diesel engine(GAZI UNIV, FAC ENGINEERING ARCHITECTURE, 2017-09-07) YILMAZ, İLKER TURGUT; Yilmaz, Ilker Turgut; Gumus, MetinIn the present study, cylinder pressures, brake specific fuel consumptions and exhaust emissions of a dual fuel diesel engine used biogas (% 60 CH4-% 40 CO2) as main fuel was examined experimentally. Experiments were conducted at 1750 rpm under 50 Nm, 75 Nm and 100 Nm loads. Results showed that biogas could be used in diesel engines for reducing soot emissions. HC emissions and maximum cylinder pressures increased for all engine loads with using biogas in diesel engine. NOx emission decreased at low engine load but increased depending on the rise of engine load. The modifications such as adjusting injection timing, decreasing compression ratio and using different lubrication oils can be used for not only increasing performance but also lowering exhaust emissions of a biogas-diesel dual fuel engine.Publication Open Access Effects of thermal barrier coated piston on performance and combustion characteristics in dual-fuel common-rail diesel engine(2023-05-01) YILMAZ, İLKER TURGUT; GÜMÜŞ, METİN; Şanlı A., Yılmaz İ. T., Gümüş M.