Person: SEMERCİ, NESLİHAN
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
SEMERCİ
First Name
NESLİHAN
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Monitoring of population shifts in an enriched nitrifying system under gradually increased cadmium loading(ELSEVIER SCIENCE BV, 2008) ÇALLI, BARIŞ; Mertoglu, Bulent; Semerci, Neslihan; Guler, Nuray; Calli, Baris; Cecen, Ferhan; Saatc, Ahmet MeteThe changes in nitrifying bacterial population under cadmium loading were monitored and evaluated in a laboratory scale continuous-flow enriched nitrification system. For this purpose, the following molecular microbiological methods were used: slot-blot hybridization, denaturing gradient gel electrophoresis (DGGE), real-time PCR followed by melting curve analysis, cloning and sequence analysis. The initial cadmium concentration was incrementally increased from 1 to 10mg/l which led to a drop in ammonia removal efficiency from 99 to 10%. inhibition was recovered when cadmium loading was stopped. During the second application of cadmium. nitrifying population became more tolerant. Even at 15 mg/l Cd, only a minor inhibition was observed. To investigate the variations in ammonia and nitrite oxidizing bacteria populations in a period of 483 days, ammonia monooxygenase (amoA) and 16S rRNA genes-based molecular techniques were used. An obvious shift was experienced in the diversity of ammonia oxidizers after the first application of 10mg/l Cd. Metal-tolerant ammonia oxidizing species became dominant and the microbial diversity sharply shifted from Nitrosomonas and Nitrosococcus sp. to Nitrosospira sp. which were observed to tolerate higher cadmium loadings. This result indicated that the extent of nitrification inhibition was not only related to the metal concentration and quantity of microorganisms but also depended on the type of species. (C) 2008 Elsevier B.V. All rights reserved.Publication Metadata only Phosphorus recovery from sewage sludge ash with bioleaching and electrodialysis(ELSEVIER SCI LTD, 2019) ÇALLI, BARIŞ; Semerci, Neslihan; Kunt, Busra; Calli, BarisPhosphorus is an essential element for all living organisms and for plants. However, phosphate rock, which is the main source of phosphorus, is limited and thus it must be recovered from secondary sources like sewage sludge ash (SSA). SSA is one of the most promising secondary sources because it contains considerable amounts of phosphorus. The drawback of SSA as a secondary source is the presence of heavy metals along with phosphorus. In this study, a bioleaching process was applied to solubilize the phosphorus more economically, thus bioleaching bacteria was used to obtain acidic conditions for phosphorus leaching. For this purpose, batch bioleaching experiments were carried out with Sulfur oxidizing bacteria (SOB) to optimize the process in terms of phosphorus dissolution. Experiments were conducted with different amounts of ash, inoculum volumes, and sulfur concentrations. Because the application of the bioleaching process leads to solubilization of heavy metals beside phosphorus, an electrodialysis process was used to separate phosphorus from heavy metals. Electrodialysis experiments were performed in a 3 compartment electrodialysis reactor with gold coated copper electrodes. The maximum phosphorus bioleaching was obtained with 2 g of ash, 40% inoculum, and 10 g.l(-1) elemental sulfur. Electrodialysis studies with gold coated copper electrodes lasted for 14 days and 24.6% of the phosphorus was transported to the anode.Publication Metadata only Treatment of synthetic wastewater and cheese whey by the anaerobic dynamic membrane bioreactor(SPRINGER HEIDELBERG, 2019) ÇALLI, BARIŞ; Pacal, Muge; Semerci, Neslihan; Calli, BarisThe aim of this study was to develop a laboratory-scale anaerobic dynamic membrane bioreactor (AnDMBR) for the treatment of high-strength synthetic and real cheese whey wastewater. We determined the appropriate pore size for a convenient type of support material (nylon mesh) to optimize cake layer formation. The performance of the AnDMBRs was measured in terms of chemical oxygen demand (COD) and solids removal efficiencies. During high-strength synthetic wastewater treatment, the 70-mu m pore size AnDMBR achieved COD removal efficiencies of 78% and 96% with COD loading rates of 4.03 and 2.34 kg m(-3) day(-1), respectively, while the 10-mu m pore size AnDMBR achieved 66% and 92% COD removal efficiencies at COD loading rates of 5.02 and 3.16 kg m(-3) day(-1). The 10 mu m pore size AnDMBR was operated in two periods: first period and second period (before and after physical cleaning) during high-strength synthetic wastewater treatment. The 10-mu m pore size AnDMBR removed 83% and 88% of suspended solids during period 1 and period 2, respectively. Furthermore, using a pore size of 10 mu m retained 72% of solids (973 mg L-1) in the reactor outlet. The 10-mu m pore size AnDMBR performed better than the 70-mu m pore size AnDMBR in terms of cake layer formation. The 10-mu m pore size AnDMBR was used to treat real cheese whey wastewater, resulting in COD removal efficiencies ranging from 59% (4.32 kg m(-3) day(-1)) to 97% (5.22 kg m(-3) day(-1)). In addition, 85% of suspended solids were removed from real cheese whey wastewater after treatment. The results show that dynamic membrane technology using a pore size of 10 mu m can be used to treat real industrial wastewater.