Person: DEMİRCİ, SELİM
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
DEMİRCİ
First Name
SELİM
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Enhanced photocatalytic activity of micro/nano textured TiO2 surfaces prepared by sandblasting/acid-etching/anodizing process(ELSEVIER SCIENCE SA, 2017) DEMİRCİ, SELİM; Dikici, Tuncay; Demirci, Selim; Erol, MustafaIn this study, micro-textured titanium surfaces were created by sandblasting and acid-etching methods. Nanostructured titanium dioxide (TiO2) films were synthesized on the micro-textured titanium surfaces by anodizing method. Subsequently, anodized (A), acid-etched/anodized (EA), sandblasted/anodized (SA) and sandblasted/acid-etched/anodized (SEA) samples were fabricated. Structural and morphological properties of the prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, surface roughness and wettability of the samples were evaluated by means of profilometry and contact angle measurement systems, respectively. Finally, the photocatalytic activities of the samples were determined by using aqueous methylene blue (MB) solutions under a specific UV light illumination for different periods of time. The obtained results pointed out that sandblasting and acid-etching treatment improved the surface roughness of the samples significantly. The photocatalytic experimental results showed that micro textured surface accelerated the degradation of MB, if compared to samples which are anodized without any of the regarding surface treatments. To sum up, sandblasted/acid-etched/anodized titanium surfaces exhibited the highest wettability, surface roughness and photocatalytic activity among the samples. The present study may shed new light on the modification of titanium surfaces. (C) 2016 Elsevier B.V. All rights reserved.Publication Metadata only Fast and low-cost fabrication of 1D hematite photoanode in pure water vapor and air atmosphere: Investigation the effect of the oxidation atmosphere on the PEC performance of the hematite photoanodes(PERGAMON-ELSEVIER SCIENCE LTD, 2017) SARIOĞLU, CEVAT; Demirci, Selim; Sarioglu, CevatIn this study, hematite photoanodes were successfully fabricated by thermal oxidation of the commercial cold-rolled steel at 500 degrees C in pure water vapor and air atmosphere. The crystal phase structure, surface morphology, and optical properties of the hematite photoanodes were characterized using an X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM) and UV-VIS spectrophotometer, respectively. The results showed that hematite photoanodes had high crystalline phase and the annealing atmosphere influenced the morphology of the hematite photoanodes. Moreover, nanowhisker and nanorod shaped nanostructures were observed on the substrate. The optical band gap values of the hematite photoanodes varied between 2.38 and 2.70 eV. Photoelectrochemical (PEC) studies of the hematite photoanodes were assessed in the 0.1 M NaOH electrolyte solution using the Mott-Schottky analysis and electrochemical impedance spectroscopy techniques. The PEC findings exhibited that the hematite photoanode annealed 15-min in water vapor had best PEC performance achieving photocurrent density 0.244 mA/cm(2) at 1.6 V vs. V-RHE and highest carrier density value (N-D = 1.15 x 10(21) cm(-3)). Furthermore, the photoanodes annealed in water vapor atmosphere revealed at least three times higher PEC performance than that of photoanodes annealed in air. Thermal oxidation method in water vapor is an efficient methods for fabrication of hematite photoanodes. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Publication Metadata only Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances(ELSEVIER, 2016) DEMİRCİ, SELİM; Demirci, Selim; Dikici, Tuncay; Yurddaskal, Metin; Gultekin, Serdar; Toparli, Mustafa; Celik, ErdalIn this study, undoped and silver (Ag) doped titanium dioxide (TiO2) films were successfully synthesized by sol-gel spin coating technique on the Si substrates. Photocatalytic activities of the TiO2 films with different Ag content were investigated for the degradation of methylene blue (MB) under UV light irradiation. The crystal phase structure, surface morphology, chemical and optical properties of Ag-doped TiO2 films were characterized using an X-ray diffractometer (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-vis spectrophotometer, and FTIR spectrophotometer. The results showed that the Ag-doped TiO2 films calcined at 500 degrees C had the crystalline anatase phases and the surface morphologies with some cracks. Ag substitution into TiO2 matrix enhanced the photocatalytic activity of TiO2 films under UV light irradiation as compared to the undoped TiO2 film. Furthermore, the results indicated that the 0.7% Ag doped TiO2 film exhibited a superior photocatalytic activity than that of undoped and other Ag-doped TiO2 films. This study demonstrated the potential of an application of Ag doped films to efficiently treat dissolved organic contaminants in water. (C) 2016 Elsevier B.V. All rights reserved.