Person:
AKTAŞ, SERDAR

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

AKTAŞ

First Name

SERDAR

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Recovery of Ruthenium Via Zinc in the Presence of Accelerator
    (SPRINGER INDIA, 2018) AKTAŞ, SERDAR; Aktas, Serdar; Morcali, Mehmet Hakan; Aksu, Kemal; Aksoy, Burak
    In this study, the recovery of ruthenium from spent bath solutions via cementation reaction with zinc powder was investigated. Studied parameters included the quantity of zinc, reaction temperature, reaction time and sodium chloride additions to understand their effects on the reaction. Tests were performed in a temperature controlled water-bath with temperatures between 20 and 70 A degrees C at atmospheric pressure. Furthermore, in order to determine activation energy of cementation reaction, several mathematical kinetic models were used and the activation energy, which was calculated from best fit, was found to be 12.48 kJ/mol. Addition of sodium chloride to the solution greatly accelerated the cementation reaction, in that, more the addition of sodium chloride, the better was the precipitation efficiency. In the absence of sodium chloride at 25 A degrees C a percentage of ruthenium recovery was below 75% whereas 1000 mg sodium chloride addition at 65 A degrees C ensured a percentage of ruthenium recovery more than 95%. This corresponded to more than about 28% increase.
  • Publication
    Oxidative dissolution of nickel matte in dilute sulfuric acid solutions
    (ELSEVIER, 2019) AKTAŞ, SERDAR; Morcali, Mehmet Hakan; Khajavia, Leili Tafaghodi; Aktas, Serdar; Dreisinger, David Bruce
    Nickel matte (Ni3S2) is the most common feedstock for producing nickel oxide and nickel metal in associated refineries. Nickel matte is produced from sulfide or laterite ores, and contains around 73 wt% nickel. This study investigated the dissolution parameters of nickel matte in dilute sulfuric acid media in the presence of air as oxidant with the goal of presenting a cost-effective process for leaching nickel matte. The dissolution experiments were carried out to examine the following effects: air flow rate, stirring speed, S/L ratio, acid concentration, reaction temperature, reaction time and the amount of ferrous sulfate added. Nickel extraction of 90% and cobalt extraction of 80% were achieved using dilute H2SO4 and sparging of air as a source of oxygen. To increase the dissolution percentage of the matte, ferrous sulfate addition was studied and the oxidation and reduction potential (ORP) was measured to investigate the effect of ferrous ions on nickel and cobalt recovery. The highest nickel dissolution percentage (95%) was observed with the initial addition of 1200 mg/L Fe (II). Characterization of samples has been carried out with quantitative X-ray diffraction (XRD) and scanning electron microscopy, along with an energy dispersive system (SEM-EDS).