Person:
ERZİK, CAN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

ERZİK

First Name

CAN

Name

Search Results

Now showing 1 - 3 of 3
  • Publication
    Antioxidant effect of alpha-lipoic acid against ethanol-induced gastric mucosal erosion in rats
    (KARGER, 2008) YEGEN, BERRAK; Sehirli, Ozer; Tatlidede, Elif; Yuksel, Meral; Erzik, Can; Cetinel, Sule; Yegen, Berrak C.; Sener, Goksel
    Background/Aims: This investigation elucidates the role of free radicals in ethanol-induced gastric mucosal erosion and the protective effect of lipoic acid. Methods: After overnight fasting, Wistar albino rats were orally treated with 1 ml of absolute ethanol to induce gastric erosion. Lipoic acid (100 mg/kg) was given orally for 3 days before ethanol administration. Mucosal damage was evaluated 1 h after ethanol administration by macroscopic examination and histological analysis. Additional tissue samples were taken for measurement of malondialdehyde, glutathione (GSH), and myelo-per oxidase activity. Production of reactive oxidants and oxidant-induced DNA fragmentation and Na+,K+-ATPase activity were also assayed in the tissue samples. Results: Generation of reactive oxygen species and lipid peroxidation associated with neutrophil infiltration play an important role in the pathogenesis of gastric mucosal damage induced by ethanol. Furthermore, oxidants depleted tissue GSH stores and impaired membrane structure as Na+,K+-ATPase activity was inhibited. On the other hand, lipoic acid treatment reversed all these biochemical indices as well as the histopathological changes induced by ethanol. Conclusion: These data suggest that lipoic acid administration effectively counteracts the deleterious effect of ethanol-induced gastric mucosal injury and attenuates gastric damage through its antioxidant effects. Copyright (C) 2008 S. Karger AG, Basel.
  • Publication
    Ginkgo biloba extract protects against ionizing radiation-induced oxidative organ damage in rats
    (ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD, 2006) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sener, G; Kabasakal, L; Atasoy, BM; Erzik, C; Velioglu-Ogunc, A; Cetinel, U; Gedik, N; Yegen, BC
    The present study was designed to determine the possible protective effects of Ginkgo biloba extract (EGb) against oxidative organ damage induced by irradiation (IR). Sprague-Dawley rats were exposed to whole-body IR (800cGy) after a 15-day pretreatment with either saline or EGb (50 mg/kg/day), intraperitoneally, and treatments were repeated immediately after the IR. Then the rats were decapitated at either 6 h or 72 It after IR, where EGb or saline injections were repeated once daily. Lung, liver, kidney and ileum samples were obtained for the determination of malondialdehyde, glutathione levels, myeloperoxidase activity and collagen contents, while oxidant-induced DNA fragmentation was evaluated in the ileal tissues. All tissues were also examined microscopically and assayed for the production of reactive oxidants using chemiluminescence (CL). Lactate dehydrogenase (LDH)-an indicator of tissue damage and TNF-alpha were assayed in serum samples. In the saline-treated irradiation groups, glutathione levels were decreased significantly, while the malondialdehyde levels, myeloperoxidase activity and collagen content were increased in the tissues (p < 0.01-0.001), which were in parallel with the increases in luminol and lucigenin CL values. In the EGb treated-IR groups, all of these oxidant responses were prevented significantly (p < 0.05-0.01). LDH and TNF-alpha levels, which were increased significantly (p < 0.01-0.001) following IR, were decreased (p < 0.05-0.001) with EGb treatment. In conclusion, the present data demonstrate that EGb, through its free radical scavenging and antioxidant properties, attenuates irradiation-induced oxidative organ injury, suggesting that EGb may have a potential benefit in enhancing the success of radiotherapy. (c) 2005 Elsevier Ltd. All rights reserved.
  • Publication
    Meloxicam Exerts Neuroprotection on Spinal Cord Trauma in Rats
    (INFORMA HEALTHCARE, 2011) VELİOĞLU ÖĞÜNÇ, AYLİZ; Hakan, Tayfun; Toklu, Hale Zerrin; Biber, Necat; Celik, Hasan; Erzik, Can; Ogunc, Ayliz Velioglu; Cetinel, Sule; Sener, Goksel
    Traumatic injury to the central nervous system results in the delayed dysfunction and neuronal death. Impaired mitochondrial function, generation of reactive oxygen species (ROS), and lipid peroxidation occur soon after traumatic spinal cord injury (SCI), while the activation of compensatory molecules that neutralize ROS occurs at later time points. The aim of the current study was to investigate the putative neuroprotective effect of the COX2 inhibitor meloxicam in a rat model of SCI. In order to induce SCI, a standard weight-drop method that induced a moderately severe injury (100 g/cm force) at T10, was used. Injured animals were given either 2 mg/kg meloxicam or saline 30 min postinjury by intraperitoneal injection. At seven days postinjury, neurological examination was performed and rats were decapitated. Spinal cord samples were taken for histological examination or determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and DNA fragmentation. Formation of ROS in spinal cord tissue samples was monitored by using a chemiluminescence (CL) technique. SCI caused a significant decrease in spinal cord GSH content, which was accompanied with significant increases in CL, MDA levels, MPO activity, and DNA damage. On the other hand, meloxicam treatment reversed all these biochemical parameters as well as SCI-induced histopathological alterations. Furthermore, impairment of the neurological functions due to SCI was improved by meloxicam treatment. The present study suggests that meloxicam, reduces SCI-induced oxidative stress and exerts neuroprotection by inhibiting lipid peroxidation, GSH depletion, and DNA fragmentation.