Person: ERZİK, CAN
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ERZİK
First Name
CAN
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Metadata only Resveratrol protects against irradiation-induced hepatic and ileal damage via its anti-oxidative activity(TAYLOR & FRANCIS LTD, 2009) VELİOĞLU ÖĞÜNÇ, AYLİZ; Velioglu-Ogunc, Ayliz; Sehirli, Ozer; Toklu, Hale Z.; Ozyurt, Hazan; Mayadagli, Alpaslan; Eksioglu-Demiralp, Emel; Erzik, Can; Cetinel, Sule; Yegen, Berrak C.; Sener, GoekselThe present study was undertaken to determine whether resveratrol (RVT) could ameliorate ionizing radiation-induced oxidative injury. After a 10-days pre-treatment with RVT (10 mg/kg/day p.o.), rats were exposed to whole-body IR (800 cGy) and the RVT treatment was continued for 10 more days after the irradiation. Irradiation caused a significant decrease in glutathione level, while malondialdehyde levels, myeloperoxidase activity and collagen content were increased in the liver and ileum tissues. Similarly, plasma lactate dehydrogenase and pro-inflammatory cytokine levels, 8-hydroxy-2'-deoxyguanosine and leukocyte apoptosis were elevated, while antioxidant-capacity was reduced in the irradiated rats as compared with the control group. Furthermore, Na-1, K-1 -ATPase activity was inhibited and DNA fragmentation was increased in the ileal tissues. Resveratrol treatment reversed all these biochemical indices, as well as histopathological alterations induced by irradiation. In conclusion, supplementing cancer patients with adjuvant therapy of resveratrol may have some benefit for a more successful radiotherapy.Publication Metadata only Ginkgo biloba extract protects against ionizing radiation-induced oxidative organ damage in rats(ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD, 2006) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sener, G; Kabasakal, L; Atasoy, BM; Erzik, C; Velioglu-Ogunc, A; Cetinel, U; Gedik, N; Yegen, BCThe present study was designed to determine the possible protective effects of Ginkgo biloba extract (EGb) against oxidative organ damage induced by irradiation (IR). Sprague-Dawley rats were exposed to whole-body IR (800cGy) after a 15-day pretreatment with either saline or EGb (50 mg/kg/day), intraperitoneally, and treatments were repeated immediately after the IR. Then the rats were decapitated at either 6 h or 72 It after IR, where EGb or saline injections were repeated once daily. Lung, liver, kidney and ileum samples were obtained for the determination of malondialdehyde, glutathione levels, myeloperoxidase activity and collagen contents, while oxidant-induced DNA fragmentation was evaluated in the ileal tissues. All tissues were also examined microscopically and assayed for the production of reactive oxidants using chemiluminescence (CL). Lactate dehydrogenase (LDH)-an indicator of tissue damage and TNF-alpha were assayed in serum samples. In the saline-treated irradiation groups, glutathione levels were decreased significantly, while the malondialdehyde levels, myeloperoxidase activity and collagen content were increased in the tissues (p < 0.01-0.001), which were in parallel with the increases in luminol and lucigenin CL values. In the EGb treated-IR groups, all of these oxidant responses were prevented significantly (p < 0.05-0.01). LDH and TNF-alpha levels, which were increased significantly (p < 0.01-0.001) following IR, were decreased (p < 0.05-0.001) with EGb treatment. In conclusion, the present data demonstrate that EGb, through its free radical scavenging and antioxidant properties, attenuates irradiation-induced oxidative organ injury, suggesting that EGb may have a potential benefit in enhancing the success of radiotherapy. (c) 2005 Elsevier Ltd. All rights reserved.