Person: ÜNAL YILDIRIM, SEMRA
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ÜNAL YILDIRIM
First Name
SEMRA
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Metadata only Glioblastoma cell adhesion properties through bacterial cellulose nanocrystals in polycaprolactone/gelatin electrospun nanofibers(ELSEVIER SCI LTD, 2020) YILMAZ, BETÜL; Unal, Semra; Arslan, Sema; Yilmaz, Betul Karademir; Kazan, Dilek; Oktar, Faik Nuzhet; Gunduz, OguzhanGlioblastoma (GBM), the most common and extremely lethal type of brain tumor, is resistant to treatment and shows high recurrence rates. In the last decades, it is indicated that standard two-dimensional (2D) cell culture is inadequate to improve new therapeutic strategies and drug development. Hence, well-mimicked three-dimensional (3D) tumor platforms are needed to bridge the gap between in vitro and in vivo cancer models. In this study, bacterial cellulose nano-crystal (BCNC) containing polycaprolactone (PCL) /gelatin (Gel) nanofibrous composite scaffolds were successfully fabricated by electrospinning for mimicking the extracellular matrix of GBM tumor. The fiber diameters in the nanofibrous matrix were increased with an increased concentration of BCNC. Moreover, fiber morphology changed from the smooth formation to the beaded formation by increasing the concentration of the BCNC suspension. In-vitro biocompatibilities of nanofibrous scaffolds were tested with U251 MG glioblastoma cells and improved cell adhesion and proliferation was compared with PCL/Gel. PCL/Gel/BCNC were found suitable for enhancing axon growth and elongation supporting communication between tumor cells and the microenvironment, triggering the process of tumor recurrence. Based on these results, PCL/Gel/BCNC composite scaffolds are a good candidate for biomimetic GBM tumor platform.Publication Open Access Evaluation of bacterial cellulose/quince seed mucilage composite scaffold for wound dressing(2022-04-01) ÜNAL YILDIRIM, SEMRA; GÜNDÜZ, OĞUZHAN; Oran D., Unal S., GÜNDÜZ O.Bacterial cellulose (BC) and quince seed mucilage are very promising biological materials. In this study, we reported the design and fabrication of a novel biocompatible scaffold with excellent fibroblast cell proliferation, making it a promising composite scaffold for wound dressings. The composite scaffold was fabricated by ex situ modification of bacterial cellulose by quince seed mucilage. The products were investigated to determine their morphological features, chemical features, and thermal and swelling behaviors. Cell culture and proliferation tests were performed to obtain information on biocompatibility of the scaffolds. This work indicates the novel scaffold provides great potential in wound dressing for clinical application.Publication Metadata only Production and characterization of bacterial cellulose scaffold and its modification with hyaluronic acid and gelatin for glioblastoma cell culture(SPRINGER, 2021) YILMAZ, BETÜL; Unal, Semra; Arslan, Sema; Yilmaz, Betul Karademir; Oktar, Faik Nuzhet; Sengil, Ahmet Zeki; Gunduz, OguzhanThree-dimensional (3D) in vitro cell culture models have recently gained increasing interest in predicting the response of anticancer drugs. In this study first, we tried to obtain a novel hyaluronic acid (HA)/gelatin (Gel) modified bacterial cellulose (BC) composite scaffolds by in situ fermentation method. Morphological and chemical structures, wettability, and thermal stability of scaffolds were evaluated. In particular, the human glioblastoma (GBM) cancer cell line (U251) was seeded into BC/HA/Gel scaffolds to evaluate their potential as in vitro 3D cancer cell culture. MTT proliferation assay, scanning electron microscopy, and confocal microscopy were utilised to determine cell proliferation, morphology and adhesion. The results suggest that our hyaluronic acid and gelatin modified bacterial cellulose scaffold is promising to be used as in vitro 3D culture of GBM cells and may be used to predict treatment response or reactions of new therapeutics.