Person: OKTAR, FAİK NÜZHET
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
OKTAR
First Name
FAİK NÜZHET
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Metadata only Investigation of 3D-Printed Polycaprolactone-/Polyvinylpyrrolidone-Based Constructs(SAGE PUBLICATIONS INC) ŞAHİN, ALİ; Izgordu, Muhammet Sefa; Uzgur, Evren Isa; Ulag, Songul; Sahin, Ali; Yilmaz, Betul Karademir; Kilic, Beyhan; Ekren, Nazmi; Oktar, Faik Nuzhet; Gunduz, OguzhanThe aim of this study is to evaluate the mechanical and biological performance of cartilage-like constructs produced by 3D printing. During the investigation, poly(epsilon-caprolactone) (PCL) and polyvinylpyrrolidone (PVP) were used as a matrix polymer and low-molecular-weight chitosan (CS), hyaluronic acid (HA), and alginic acid sodium salt (SA) were integrated separately with the polymer matrix to fabricate the constructs. Thermal, mechanical, morphology, and chemical properties and swelling, degradation, and biocompatibility behaviors were evaluated in detail. With the addition of 3 fillers, the melting temperature of the matrix increased with the addition of fillers, and PCL/3wt.%PVP/1wt.%HA had the highest melting temperature value. Mechanical characterization results demonstrated that the printed PCL/3wt.%PVP/1wt.%CS displayed the highest compressive strength of around 9.51 MPa. The compressive strength difference between the PCL/3wt.%PVP and PCL/3wt.%PVP/1wt.%CS was 5.38 MPa. Biocompatibility properties of the constructs were tested by mitochondrial dehydrogenase activity, and in vitro studies showed that the PCL/3wt.%PVP/1wt.%HA composite construct had more cell viability than the other constructs by making use of the mesenchymal stem cell line.Publication Metadata only Production of 3D-Printed Tympanic Membrane Scaffolds as a Tissue Engineering Application(Springer, 2020) ŞAHİN, ALİ; Ilhan E., Ulag S., Sahin A., Ekren N., Kilic O., Oktar F.N., Gunduz O.In recent years, scaffolds produced in 3D printing technology have become more widespread tool due to providing more advantages than traditional methods in tissue engineering applications. In this research, it was aimed to produce patches for the treatment of tympanic membrane perforations which caused significant hearing loss by using 3D printing method. Polylactic acid (PLA) scaffolds with Chitosan (CS) added in various ratios were prepared for artificial eardrum patches. Different amounts of CS added to PLA to obtain more biocompatible scaffolds. The created patches were designed by mimicking the thickness of the natural tympanic membrane thanks to the precision provided by the 3D printed method. The produced scaffolds were analyzed separately for physical, chemical, morphological, mechanical and biocompatibility properties. Human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) were used for cell culture study to analyze the biocompatibility properties. 15 wt% PLA was chosen as the control group. Scaffold containing 3 wt% CS demonstrated significantly superior and favorable features in printing quality. The study continued with these two scaffolds (15PLA and 15PLA/3CS). This study showed that PLA and PLA/CS 3D printed scaffolds are a potential application for repairing tympanic membrane perforation. © Springer Nature Switzerland AG 2020.