Person:
OKTAR, FAİK NÜZHET

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

OKTAR

First Name

FAİK NÜZHET

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Glioblastoma cell adhesion properties through bacterial cellulose nanocrystals in polycaprolactone/gelatin electrospun nanofibers
    (ELSEVIER SCI LTD, 2020) YILMAZ, BETÜL; Unal, Semra; Arslan, Sema; Yilmaz, Betul Karademir; Kazan, Dilek; Oktar, Faik Nuzhet; Gunduz, Oguzhan
    Glioblastoma (GBM), the most common and extremely lethal type of brain tumor, is resistant to treatment and shows high recurrence rates. In the last decades, it is indicated that standard two-dimensional (2D) cell culture is inadequate to improve new therapeutic strategies and drug development. Hence, well-mimicked three-dimensional (3D) tumor platforms are needed to bridge the gap between in vitro and in vivo cancer models. In this study, bacterial cellulose nano-crystal (BCNC) containing polycaprolactone (PCL) /gelatin (Gel) nanofibrous composite scaffolds were successfully fabricated by electrospinning for mimicking the extracellular matrix of GBM tumor. The fiber diameters in the nanofibrous matrix were increased with an increased concentration of BCNC. Moreover, fiber morphology changed from the smooth formation to the beaded formation by increasing the concentration of the BCNC suspension. In-vitro biocompatibilities of nanofibrous scaffolds were tested with U251 MG glioblastoma cells and improved cell adhesion and proliferation was compared with PCL/Gel. PCL/Gel/BCNC were found suitable for enhancing axon growth and elongation supporting communication between tumor cells and the microenvironment, triggering the process of tumor recurrence. Based on these results, PCL/Gel/BCNC composite scaffolds are a good candidate for biomimetic GBM tumor platform.
  • Publication
    Production and characterization of electrospun fish sarcoplasmic protein based nanofibers
    (ELSEVIER SCI LTD, 2018) KAZAN, DİLEK; Sahin, Yesim M.; Su, Sena; Ozbek, Burak; Yucel, Sevil; Pinar, Orkun; Kazan, Dilek; Oktar, Faik N.; Ekren, Nazmi; Gunduz, Oguzhan
    In this study, poly (e-caprolactone) (PCL) and fish sarcoplasmic protein (FSP) (Mw < 200 kDa) composite nanofibers were fabricated by electrospinning technique. Solution properties such as density, viscosity, conductivity and surface tension were studied as a function of FSP content in the solution. The morphology, molecular interaction, degradation as well as thermal and tensile properties of PCL/FSP nanofibers were investigated. The results show that smooth and beadless PCL/FSP nanofibers with the diameters ranging from 120 +/- 29 nm to 139 +/- 41 nm were obtained. The average diameters decreased and the diameter distributions narrowed with the addition of optimum FSP amount. The characteristic picks of FSP and PCL were identified in the composite nanofibers by structural analyses. PCL/FSP nanofibers exhibited high degradation ability in comparison to electrospun pure PCL nancifibers. Moreover, the PCL/FSP nanofibers exhibit good mechanical properties (tensile strength of 5.55 MPa) with the additional FSP content. (C) 2017 Elsevier Ltd. All rights reserved.