Person: OKTAR, FAİK NÜZHET
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
OKTAR
First Name
FAİK NÜZHET
Name
11 results
Search Results
Now showing 1 - 10 of 11
Publication Metadata only Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application(SPRINGER, 2020) BİLĞİÇ ALKAYA, DİLEK; Cesur, Sumeyye; Oktar, Faik Nuzhet; Ekren, Nazmi; Kilic, Osman; Alkaya, Dilek Bilgic; Seyhan, Serap Ayaz; Ege, Zeynep Ruya; Lin, Chi-Chang; Erdem, Serap; Erdemir, Gokce; Gunduz, OguzhanBone tissue engineering has begun to draw attention in recent years. The interactive combination of biomaterials and cells is part of bone tissue engineering. Sodium alginate (SA) is a biologically compatible, degradable, non-toxic natural polymer accepted by the human body and is widely used in the field of tissue engineering. Polylactic acid (PLA) is another type of biodegradable thermoplastic polyester derived from renewable sources which are used in bone tissue engineering and biomedical owing to its biocompatibility and biodegradability. Hydroxyapatite (HA) and tricalcium phosphate (TCP) derived from natural sources such as marine species and bovine bone are biocompatible and non-toxic biomaterials which are used to reconstruct many parts of the skeleton. In this study, PLA, SA with different compositions, and nanofibers obtained by adding orange spiny oyster shell powders (Spondylus barbatus) to them by using electrospining technique. Cell culture study, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and physical analysis such as density, electrical conductivity, surface tension, viscosity measurement, and tensile strength measurement tests were carried out after the production process. Produced nanofibers showed smooth and beadless surface. The average diameters and distributions decreased with the addition of optimum PLA and TCP amount. The tensile strength of nanofibers was enhanced with the additional SA and TCP. The produced nanofibers are compatible with human bone tissue, which are not cytotoxic, and in addition, a high cell efficiency of SaOS-2 cells on the nanofibers was observed with SEM images.Publication Metadata only Production and Characterization of Antimicrobial Electrospun Nanofibers Containing Polyurethane, Zirconium Oxide and Zeolite(SPRINGER, 2018) OKTAR, FAİK NÜZHET; Aydogdu, Mehmet Onur; Oprea, Alexandra Elena; Trusca, Roxana; Surdu, Adrian Vasile; Ficai, Anton; Holban, Alina Maria; Iordache, Florin; Paduraru, Andrei Viorel; Filip, Diana Georgiana; Altun, Esra; Ekren, Nazmi; Oktar, Faik Nuzhet; Gunduz, OguzhanIn this study, electrospinning technique has been utilized to prepare composite nanofiber mats of polyurethane (PU)/zirconium dioxide (ZrO2) and PU/zeolite, consisted by antimicrobial properties. Tensile strength measurement test was performed for the mechanical analysis of the nanofibers. Scanning electron microscopy (SEM) were performed for displaying the morphological features of the fiber structure. XRD tests were performed for revealing the chemical structure. Antimicrobial tests were also performed to display antimicrobial effects of the produced materials. In vitro test was also performed to determine cytotoxicity and biocompatibility. The present PU/ZrO2 and PU/zeolite composite nanofibers resulted with improved mechanical properties and good antimicrobial properties against either their pure forms or other studies. Cell proliferation and viability also increased significantly with increase in zeolite and ZrO2 ratio. It is concluded that this composition provides a novel alternative as an antimicrobial material which can be suitable as a wound dressing or a coating material for various healthcare engineering applications.Publication Metadata only 3D Printing of Gelatine/Alginate/beta-Tricalcium Phosphate Composite Constructs for Bone Tissue Engineering(WILEY-V C H VERLAG GMBH, 2019) OKTAR, FAİK NÜZHET; Kalkandelen, Cevriye; Ulag, Songul; Ozbek, Burak; Eroglu, Gunes O.; Ozerkan, Dilsad; Kuruca, Serap E.; Oktar, Faik N.; Sengor, Mustafa; Gunduz, OguzhanBone tissue engineering studies have brought three-dimensional scaffolds into focus that can provide tissue regeneration with designed porosity and strengthened structure. Current research has concentrated on the fabrication of natural and synthetic polymer-based complex structures that closely mimic biological tissues due to their superior biocompatibility and biodegradabilities. Gelatine/Sodium Alginate hydrogels reinforced with different concentrations of beta-Tricalcium Phosphate (TCP) (10, 13, and 15 wt.%) were studied to form 3D bone tissue. Physical, mechanical, chemical, morphological properties and biodegradability of the constructs were investigated. Furthermore, in vitro biological assay with human osteosarcoma cell line (SAOS-2) was performed to determine the biocompatibility of the constructs. It is found that cell viability rates for all constructs were increased and maximum cell viability rate was attained for 20%Gelatine/2%Alginate/10%TCP (wt.). The present work demonstrates that 3D printed Gelatine/Alginate/TCP constructs with porous structures are potential candidates for bone tissue engineering applications.Publication Metadata only Design and characterization of polycaprolactone-gelatin-graphene oxide scaffolds for drug influence on glioblastoma cells(PERGAMON-ELSEVIER SCIENCE LTD, 2019) ATASOY, BESTE MELEK; Unal, Semra; Arslan, Sema; Gokce, Tilbe; Atasoy, Beste Melek; Karademir, Betul; Oktar, Faik Nuzhet; Gunduz, OguzhanThree-dimensional (3D) scaffolds that mimic in vivo tumor microenvironments can be used to study tumor response to anticancer treatments, since most preclinical combination treatment strategy for anti-glioma were evaluated with traditional 2D cell culture. In this research, the nanofiber scaffolds of polycaprolactone (PCL) containing gelatin (Gel) nano/microparticles coated with different concentrations of graphene oxide (GO) and were successfully produced by combining electrospinning and electrospraying techniques. Scanning electron microscope (SEM), Fourier-transform infrared (FT-IR) spectroscopy and mechanical testing were used to characterize the structure and properties of the composites. The results show that gelatin and graphene particles can be well dispersed in the polycaprolactone nanofiber matrix by using the combination technique of electrospinning and electrospraying. The presence of 1 wt% graphene oxide increased mechanical strength of PCL/Gel scaffold and was found to be well consistent with the drug treatments (temozolomide and bortezomib) and radiotherapy by not showing additional toxicity.Publication Metadata only Production of the biomimetic small diameter blood vessels for cardiovascular tissue engineering(TAYLOR & FRANCIS AS, 2019) TOKSOY ÖNER, EBRU; Aydogdu, Mehmet Onur; Chou, Joshua; Altun, Esra; Ekren, Nazmi; Cakmak, Selami; Eroglu, Mehmet; Osman, Asila A.; Kutlu, Ozlem; Oner, Ebru Toksoy; Avsar, Gulben; Oktar, Faik Nuzhet; Yilmaz, Ismail; Gunduz, OguzhanA novel biomimetic vascular graft scaffolds were produced by electrospinning method with the most superior characteristics to be a proper biomimetic small diameter blood vessel using Polycaprolactone(PCL), Ethyl Cellulose(EC) and Collagen Type-1 were used to create the most convenient synergy of a natural and synthetic polymer to achieve similarity to native small diameter blood vessels. Scanning Electron Microscopy(SEM), Fourier Transform Infrared Spectroscopy(FTIR), Differential Scanning Calorimetry Analysis(DSC), tensile measurement tests, and in-vitro and in-vivo applications were performed. Results indicated significant properties such as having 39.33 nm minimum, 104.98 nm average fiber diameter, 3.2 MPa young modulus and 135% relative cell viability. [GRAPHICS] .Publication Metadata only Glioblastoma cell adhesion properties through bacterial cellulose nanocrystals in polycaprolactone/gelatin electrospun nanofibers(ELSEVIER SCI LTD, 2020) YILMAZ, BETÜL; Unal, Semra; Arslan, Sema; Yilmaz, Betul Karademir; Kazan, Dilek; Oktar, Faik Nuzhet; Gunduz, OguzhanGlioblastoma (GBM), the most common and extremely lethal type of brain tumor, is resistant to treatment and shows high recurrence rates. In the last decades, it is indicated that standard two-dimensional (2D) cell culture is inadequate to improve new therapeutic strategies and drug development. Hence, well-mimicked three-dimensional (3D) tumor platforms are needed to bridge the gap between in vitro and in vivo cancer models. In this study, bacterial cellulose nano-crystal (BCNC) containing polycaprolactone (PCL) /gelatin (Gel) nanofibrous composite scaffolds were successfully fabricated by electrospinning for mimicking the extracellular matrix of GBM tumor. The fiber diameters in the nanofibrous matrix were increased with an increased concentration of BCNC. Moreover, fiber morphology changed from the smooth formation to the beaded formation by increasing the concentration of the BCNC suspension. In-vitro biocompatibilities of nanofibrous scaffolds were tested with U251 MG glioblastoma cells and improved cell adhesion and proliferation was compared with PCL/Gel. PCL/Gel/BCNC were found suitable for enhancing axon growth and elongation supporting communication between tumor cells and the microenvironment, triggering the process of tumor recurrence. Based on these results, PCL/Gel/BCNC composite scaffolds are a good candidate for biomimetic GBM tumor platform.Publication Metadata only Novel electrospun polycaprolactone/graphene oxide/Fe3O4 nanocomposites for biomedical applications(ELSEVIER SCIENCE BV, 2018) OKTAR, FAİK NÜZHET; Aydogdu, Mehmet Onur; Ekren, Nazmi; Suleymanoglu, Mediha; Erdem-Kuruca, Serap; Lin, Chi-Chang; Bulbul, Ertugrul; Erdol, Meltem Nur; Oktar, Faik Nuzhet; Terzi, Umit Kemalettin; Kilic, Osman; Gunduz, OguzhanIn this study, one of the most promising methods of tailoring a composite scaffold material in nano sized diameters, electrospinning method were used to produce Polycaprolactone (PCL)/Graphene Oxide (GO)/Iron(II, III) Oxide (Fe3O4) nanocomposite fibers as biocompatible scaffolds for biomedical applications. Products were analyzed by scanning electron microscopy (SEM) for morphological analysis of the electrospun nanocomposites and Fourier Transform Infrared Spectroscopy (FTIR) was used to determine functional groups of the PCL, GO, and Fe3O4 materials in the electrospun nanocomposites. For physical properties, viscosity, density, permittivity, dielectric loss and liquid and solid state alternating current conductivity, measurements were done for each nanocomposite fibers. Effects of concentration percentage of GO on permittivity, dielectric loss and AC conductivity have been analyzed by using measured and calculated data. Trend lines have been drawn for permittivity, dielectric loss and conductivity via concentration percentage of GO. The relation between ac conductivity and frequency have been studied for each concentration percentage of GO and interpretations have been done by using the obtained results.Publication Metadata only Production and characterization of electrospun fish sarcoplasmic protein based nanofibers(ELSEVIER SCI LTD, 2018) KAZAN, DİLEK; Sahin, Yesim M.; Su, Sena; Ozbek, Burak; Yucel, Sevil; Pinar, Orkun; Kazan, Dilek; Oktar, Faik N.; Ekren, Nazmi; Gunduz, OguzhanIn this study, poly (e-caprolactone) (PCL) and fish sarcoplasmic protein (FSP) (Mw < 200 kDa) composite nanofibers were fabricated by electrospinning technique. Solution properties such as density, viscosity, conductivity and surface tension were studied as a function of FSP content in the solution. The morphology, molecular interaction, degradation as well as thermal and tensile properties of PCL/FSP nanofibers were investigated. The results show that smooth and beadless PCL/FSP nanofibers with the diameters ranging from 120 +/- 29 nm to 139 +/- 41 nm were obtained. The average diameters decreased and the diameter distributions narrowed with the addition of optimum FSP amount. The characteristic picks of FSP and PCL were identified in the composite nanofibers by structural analyses. PCL/FSP nanofibers exhibited high degradation ability in comparison to electrospun pure PCL nancifibers. Moreover, the PCL/FSP nanofibers exhibit good mechanical properties (tensile strength of 5.55 MPa) with the additional FSP content. (C) 2017 Elsevier Ltd. All rights reserved.Publication Metadata only Nanofibrous wound dressing material by electrospinning method(TAYLOR & FRANCIS AS, 2019) İNAN, AHMET TALAT; Yeniay, Eda; Ocal, Leyla; Altun, Esra; Giray, Betul; Oktar, Faik Nuzhet; Inan, Ahmet Talat; Ekren, Nazmi; Kilic, Osman; Gunduz, OguzhanWound dressings are very useful materials for accelerating the wound healing process. In this study, nanofibrous wound dressings were produced from blending solution of Poly-lactic acid(PLA)/Chitosan(C)/Starch(S)/Zinc oxide(Z) by electrospinning method. Morphology, chemical interaction, mechanical, water uptake and weight loss tests were performed on each samples. Moreover, the biocompatibility of primary dermal fibroblast (ATCC, PCS-201-012) on prepared wound dressings was investigated with MTT assays in vitro, and the samples were found suitable for cell viability and proliferation. These results suggest that produced nanofibrous wound dressings can be promising candidate for wound dressing applications. [GRAPHICS] .Publication Metadata only Production of the novel fibrous structure of poly(epsilon-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering(AUSTRALIAN CERAMIC SOCIETY, 2018) OKTAR, FAİK NÜZHET; Ozbek, Burak; Erdogan, Barkin; Ekren, Nazmi; Oktar, Faik Nuzhet; Akyol, Sibel; Ben-Nissan, Besim; Sasmazel, Hilal Turkoglu; Kalkandelen, Cevriye; Mergen, Ayhan; Kuruca, Serap Erdem; Ozen, Gunes; Gunduz, OguzhanNanofibrous composites of the poly(epsilon-caprolactone) (PCL), tricalcium phosphate (TCP), and hexagonal boron nitride (h-BN) with different compositions were manufactured by using an economical and non-complicated method called electrospinning. Produced fibrous structures showed no bead formation and had a clean surface. Characterization of the composites showed that particles were successfully mixed with polymer phase. High cell activity of SaOS-2 cells on the composites was observed with SEM images. In addition, fibrous scaffolds are biocompatible with human bone tissue and are highly degradable.