Person:
OKTAR, FAİK NÜZHET

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

OKTAR

First Name

FAİK NÜZHET

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Synthesis and characterization of interpenetrating network (IPN) based levan-polyacrylamide hydrogels and their application in conservation of cultural heritage
    (2023-11-01) ÜNAL YILDIRIM, SEMRA; OKTAR, FAİK NÜZHET; GENÇ, SEVAL; TOKSOY ÖNER, EBRU; Özen Sağlam R., Ünal Yıldırım S., Oktar F. N., Genç S., Erdem G., Toksoy Öner E.
    In this study, an IPN based enzymatic levan-polyacrylamide hydrogel (EL-PA) was developed and characterized for its structural, morphological, rheological properties and swelling kinetics to underline hydrogel properties and its potential use in paper conservation. The addition of levan also led to changes in the viscoelastic behavior of the hydrogels, with the complex viscosity of EL-PA samples showing pronounced dependence on shear rate. The swelling and the overall surface area of the hydrogels were increased with the addition of levan into the polymer network. Source associated structural differences were found to be negligible such that both microbially produced linear and enzymatically produced branched forms of levan performed equally well. Solvent loaded hydrogels were then applied on an artifact, a 19th century book of Namık Kemal, and investigated using FTIR, SEM, XRD and colorimetric analysis. Old adhesive layers were successfully removed, and hydrogels showed good compatibility and ease of application. This study has shown that levan has improved hydrogel properties and levan based systems bear high potential in conservation science.
  • PublicationOpen Access
    An eco-friendly process to extract hydroxyapatite from sheep bones for regenerative medicine: Structural, morphologic and electrical studies
    (2023-05-01) GÜNDÜZ, OĞUZHAN; OKTAR, FAİK NÜZHET; Gavinho S. R., Bozdag M., KALKANDELEN C., Regadas J. S., Jakka S. K., GÜNDÜZ O., OKTAR F. N., Graça M. P. F.
    Hydroxyapatite (HA) promotes excellent bone regeneration in bone-tissue engineering, due to its similarity to bone mineral and its ability to connect to living tissues. These factors promote the osteointegration process. This process can be enhanced by the presence of electrical charges, stored in the HA. Furthermore, several ions can be added to the HA structure to promote specific biological responses, such as magnesium ions. The main objective of this work was to extract hydroxyapatite from sheep femur bones and to study their structural and electrical properties by adding different amounts of magnesium oxide. The thermal and structural characterizations were performed using DTA, XRD, density, Raman spectroscopy and FTIR analysis. The morphology was studied using SEM, and the electrical measurements were registered as a function of frequency and temperature. Results show that: (i) an increase of MgO amount indicates that the solubility of MgO is below 5%wt for heat treatments at 600 °C; (ii) the rise of MgO content increases the capacity for electrical charge storage; (iii) sheep hydroxyapatite presents itself as a natural source of hydroxyapatite, environmentally sustainable and low cost, and promising for applications in regenerative medicine.