Person: TOKSOY ÖNER, EBRU
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
TOKSOY ÖNER
First Name
EBRU
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Evaluation of the Potential Use of Levan Polysaccharide in Paper Conservation(WILEY-HINDAWI, 2020-08-10) TOKSOY ÖNER, EBRU; Saglam, Rumeysa Ozen; Genc, Seval; Oner, Ebru ToksoyConservation of paper-based materials, namely, manuscripts, includes repair of tears, gap filling, consolidation, and fixation, which requires the use of adhesives. The adhesive in use for these purposes should be compatible with the chemical and physical properties of paper and should present good aging characteristics. In this study, we conducted a set of experiments with paper samples on which fructan-based biopolymer Halomonas levan (Hlevan) was applied for the first time and compared with glucan-based adhesive starch. Adhesive-applied samples were initially prepared by the application of different historical recipes of sizing and ink. Then, they underwent accelerated thermal aging. Chemical and physical changes of paper samples (crystallinity, pH, and color) were analyzed. Finally, Principal Component Analysis was performed to identify dominating factors affecting sample behavior with applied adhesives. This study demonstrates the aging characteristics of Hlevan on cellulose-based materials. The results showed that there is a color shift from blue to yellow for all samples after aging, but it is more pronounced for some samples with Hlevan. In addition, Hlevan is slightly less acidic than starch in all cases and acted as a plasticizer for a specific kind of sizing material. The methodology of this research is also efficacious in terms of understanding the interaction of paper media with the adhesives and their effects on aging.Publication Open Access Polymer Based Bioadhesive Biomaterials for Medical Application-A Perspective of Redefining Healthcare System Management(MDPI, 2020-12-16) TOKSOY ÖNER, EBRU; Saha, Nibedita; Saha, Nabanita; Saha, Tomas; Toksoy Oner, Ebru; Brodnjak, Urska Vrabic; Redl, Heinz; von Byern, Janek; Saha, PetrThis article deliberates about the importance of polymer-based bioadhesive biomaterials' medical application in healthcare and in redefining healthcare management. Nowadays, the application of bioadhesion in the health sector is one of the great interests for various researchers, due to recent advances in their formulation development. Actually, this area of study is considered as an active multidisciplinary research approach, where engineers, scientists (including chemists, physicists, biologists, and medical experts), material producers and manufacturers combine their knowledge in order to provide better healthcare. Moreover, while discussing the implications of value-based healthcare, it is necessary to mention that health comprises three main domains, namely, physical, mental, and social health, which not only prioritize the quality healthcare, but also enable us to measure the outcomes of medical interventions. In addition, this conceptual article provides an understanding of the consequences of the natural or synthetic polymer-based bioadhesion of biomaterials, and its significance for redefining healthcare management as a novel approach. Furthermore, the research assumptions highlight that the quality healthcare concept has recently become a burning topic, wherein healthcare service providers, private research institutes, government authorities, public service boards, associations and academics have taken the initiative to restructure the healthcare system to create value for patients and increase their satisfaction, and lead ultimately to a healthier society.Publication Open Access Resveratrol-Loaded Levan Nanoparticles Produced by Electrohydrodynamic Atomization Technique(MDPI, 2021-09-30) TOKSOY ÖNER, EBRU; Cinan, Ezgi; Cesur, Sumeyye; Haskoylu, Merve Erginer; Gunduz, Oguzhan; Oner, Ebru ToksoyConsidering the significant advances in nanostructured systems in various biomedical applications and the escalating need for levan-based nanoparticles as delivery systems, this study aimed to fabricate levan nanoparticles by the electrohydrodynamic atomization (EHDA) technique. The hydrolyzed derivative of levan polysaccharide from Halomonas smyrnensis halophilic bacteria, hydrolyzed Halomonas levan (hHL), was used. Nanoparticles were obtained by optimizing the EHDA parameters and then they were characterized in terms of morphology, molecular interactions, drug release and cell culture studies. The optimized hHL and resveratrol (RS)-loaded hHL nanoparticles were monodisperse and had smooth surfaces. The particle diameter size of hHL nanoparticles was 82.06 & PLUSMN; 15.33 nm. Additionally, release of RS from the fabricated hHL nanoparticles at different pH conditions were found to follow the first-order release model and hHL with higher RS loading showed a more gradual release. In vitro biocompatibility assay with human dermal fibroblast cell lines was performed and cell behavior on coated surfaces was observed. Nanoparticles were found to be safe for healthy cells. Consequently, the fabricated hHL-based nanoparticle system may have potential use in drug delivery systems for wound healing and tissue engineering applications and surfaces could be coated with these electrosprayed particles to improve cellular interaction.