Person: SAĞLAM, ŞAFAK
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
SAĞLAM
First Name
ŞAFAK
Name
17 results
Search Results
Now showing 1 - 10 of 17
Publication Metadata only A review of anti-reflection and self-cleaning coatings on photovoltaic panels(PERGAMON-ELSEVIER SCIENCE LTD, 2020) EKREN, NAZMİ; Sarkin, Ali Samet; Ekren, Nazmi; Saglam, SafakThe production of electrical energy from solar energy through the photovoltaic method has become increasingly widespread throughout the world in the last 20 years. The photovoltaic energy system generates electricity depending on the amount of sunlight reaching the solar cell, and the amount of sunlight that reaches the solar cells in a solar panel decreases due to factors such as soil and organic dirt. At the same time, sunlight is refracted and reflected due to the reflective effect of the cover glass surface, even if the surface of the photovoltaic panel is clean. The remaining solar rays are broken and reach the solar cell. Decreasing sunlight also causes a decrease in electrical power output. Thus, to overcome these problems, photovoltaic solar cells and cover glass are coated with anti-reflective and self-cleaning coatings. As observed in this study, SiO2, MgF2, TiO2, Si3N4, and ZrO2 materials are widely used in anti-reflection coatings. Common methods used are sol-gel + spin-coating or + dipcoating, sputtering, DC or RF magnetron, and electrospun methods. Regarding self-cleaning applications, fabricating superhydrophobic surfaces stands out among other methods. In self-cleaning applications, Al2O3, TiO2, and Si3N4 are the most suitable materials; the double- and triple-layer coatings yield successful results in terms of surface adhesion and durability. In multi-layer anti-reflection coatings, the reflectance was reduced in studies in which materials with low and high reflection indexes were applied and light transmittance was increased.Publication Metadata only A technical review of building-mounted wind power systems and a sample simulation model(2012) SAĞLAM, ŞAFAK; Ayhan D., Saǧlam A.Small scale wind turbines installed within the built environment is classified as micro generation technology. This paper reports the investigation results of wind power application in buildings. First, general information is given for common type of wind turbines are used on buildings. Second, the wind aerodynamics and wind flows over the buildings are investigated based on local meteorological data and local building characteristics. However, to receive the highest potential wind energy resource and avoid turbulent areas, the tool of Computational Fluid Dynamics (CFD) has to be used to model the annual wind flows over buildings to help analyze, locate, and design wind turbines on and around buildings. Three different sample models for buildings and rural residential areas are explained with CFD models. © 2011 Elsevier Ltd. All rights reserved.Publication Metadata only Investigation of light transmittance of coatings containing sio2 and tio2 nano-particle made by electrospinning technique(2022-04-07) EKREN, NAZMİ; SAĞLAM, ŞAFAK; SARKIN A. S., EKREN N., SAĞLAM Ş.The electrospinning technique is a coating method with controllable parameters. This study aims to make a coating that increases light transmission, reduces reflection, and has self-cleaning properties on laboratory slide glasses by the electrospinning method. Studies in the literature were investigated that had been used SiO2, TiO2, polymers for it. PLA and PMMA were used as polymers, SiO2 and TiO2 were used as nanoparticles, and Chloroform was used as the solvent. Solutions were prepared at different mixtures and ratios. The solutions were applied with different electrospinning parameters. The coatings were examined in terms of surface adhesion and surface distribution, and some were found to be successful. The light transmittance was the highest with 66.2% in solution-6 containing 1.6 g PLA and 0.05 g SiO2. In coatings containing SiO2 and TiO2, the light transmittance of solution-7 with 1.6 g PLA, 0.025 g SiO2, and 0.025 g TiO2 was 64.8%, and solution-10 with 2 g PLA and 0.05 g SiO2, and 0.05 g TiO2 had 64.4% light transmission.Publication Open Access Challenges during commissioning and operation in photovoltaic power plants by electrical faults(2023-05-01) SAĞLAM, ŞAFAK; ORAL, BÜLENT; Gökgöz M., SAĞLAM Ş., ORAL B.Problems such as increasing environmental pollution and global warming due to fossil fuels used in energy production have revealed the requirement for renewable energy sources. In addition to this situation, the decreasing fossil fuel reserves, and the need to diversify energy production resources to ensure energy supply security for countries have made the use of renewable energy sources a necessity. Therefore, demand for solar energy will continue to increase, considering the increasing renewable energy need. To increase energy efficiency, the uninterrupted production of photovoltaic power plants during production hours is important to reduce the consumption of fossil fuels. For this reason, situations and malfunctions that prevent uninterrupted operations should be detected. Fault classification contributes to the rapid identification of problems by providing fast diagnostics for possible faults. When the previous studies in this field are examined, there are publications about general faults in photovoltaic power plants and publications about electrical faults separately. However, there are limitations in academic studies that deal with the difficulties encountered in the commissioning and operation of photovoltaic power plants in detail and examine electrical faults. In this context, there is a need for relevant studies. In this study, the possible failures that may occur during the commissioning and operation of photovoltaic power plants will be categorized and this study is intended to be a resource for studies on this subject. It is aimed to create a resource for academic studies and to contribute to field applications to companies in the sector.Publication Open Access The importance of in-service training in restructuring sectors(ELSEVIER SCIENCE BV, 2010) ORAL, BÜLENT; Oral, Bulent; Saglam, Safak; Uzunboylu, HReduction or abolishment operation of government's intervention to economy, accelerating since the beginning of 1980s, is adopted by many governments as governance policy. This policy, being widely used in manufacturing industry and service sector at the beginning, has been used subsequently in electricity, natural gas, water ... etc industry as natural monopoly. The employee needs to know position at institution organization, individual value and expectations. It is effective on the employee performance. In this context, the employees can take in-service education their institutions and regulatory authorities, which regulate and supervise the sectors. The in-service education plan is supported the program content and process by academic circles. In this study, it is emphasized process and content of scheduled in-service education program.Publication Metadata only Light sources of solar simulators for photovoltaic devices: A review(PERGAMON-ELSEVIER SCIENCE LTD, 2017) ORAL, BÜLENT; Esen, Vedat; Saglam, Safak; Oral, BulentAs solar power usage is increasing nowadays, performance tests have become one of the most important topics in order to guarantee the security of photovoltaic tools. For photovoltaic panels to become efficient, there is need for health testing of all materials and technologies used in the production of the panels in electrical and optical aspects. Thus, when future energy standards are considered, it is imperative to use solar simulators that obtain near real sunlight spectrum values. The most important components of solar simulators used in photovoltaic panel tests are light sources. In this study, solar simulators' were classified based on the light sources they use, and their history and technological development were investigated in line with the literature. Within the scope of this study, carbon arc lamps, sodium vapor lamps, argon arc lamps, quartz-tungsten halogen lamps, mercury xenon lamps, xenon arc, xenon flash lamps, metal halide lamps, LED and super continuum laser light sources were investigated. Additionally, to compare spectral deficiency among these light sources and solar simulators, multiple light sourced solar simulators were also covered under a separate title.Publication Metadata only Enerji teknolojileri (Orta Okul)(TÜBİTAK Bilim ve Toplum Başkanlığı, 2023-01-01) SAĞLAM, ŞAFAK; ORAL, BÜLENT; Oral B., Sağlam Ş.Enerji; yaşamımızda en çok duyduğumuz ve kullandığımız kavramlardan biri olmakla beraber, günümüzde sosyal, ekonomik, teknolojik ve çevresel yönleriyle ele alınan ve değerlendirilen çok geniş bir kapsama sahiptir. Kavram olarak günlük yaşamda farklı kullanımları ve birçok disiplinde farklı tanımlamaları vardır. Günlük yaşamda kullandığımız enerji kavramı, kullanıma göre farklı büyüklüklerin oluşmasına neden olur. Bu büyüklükleri bilmek ve yaşamımızın içerisinde bilinçli olarak kullanmak, hem topluma hem de bireylere ekonomik ve çevresel faydalar sağlayacağı bir gerçektir. Bu kapsamda toplumun tüm eğitim seviyelerinde okul öncesinden başlayarak, yaşam boyu öğrenme süreci ile enerji okuryazarlığı kavramı ele alınmalı ve geliştirilmelidir. Böylece bireylerin günlük kullanımlarında farklı bakış açıları ve gelişim süreci elde edebilir.Enerji teknolojileri; enerjinin üretiminden tüketimine kadar birçok alt sistem ve bileşeni kapsamaktadır. Çok büyük etki alanına sahip olan enerjinin üretim-tüketim sürecinde sürdürebilir yaşamı desteklemek, ekonomik ve teknolojik olmak gibi birçok ölçüt öne çıkmaktadır. Bu kapsamda enerji teknolojilerinin yenilenmesi, genel olarak mevcut teknolojileri iyileştirmek veya yenilerini oluşturmak olarak ifade edilmektedir. Uzun vadeli olarak enerji teknolojileri üzerine yapılan araştırmalarda ve istihdamda uluslararası literatürdeki çalışmaların kapsamında en önemli üç başlık; enerji verimliliği, enerji depolanması ve yenilenebilir enerji kaynakları olarak ifade edilmektedir. Bu temel alanlar öğrencilerimizin yönlendirilmesi açısından önemlidir.Sunulan bu çalışmayla öğretmenler, enerji teknolojileri başlığı altında öncelikle öğrencilerin enerji kavramından başlayarak, enerji okuryazarlığı ve sürdürülebilir yaşamı destekleme süreçlerini kavramaları hedeflemelidir. Bu çerçevede çalışmada ilk olarak enerji kavramının tanımı, büyüklük olarak anlamı, dönüşümü, enerji verimliliği konuları yer almaktadır. Sonraki aşamada ise, enerji teknolojilerinin üretim süreçleri ele alınmaktadır. Böylece geleneksel ve yenilenebilir enerji kaynakları üzerine enerji teknolojileri ifade edilmektedir. Özellikle çalışmada rüzgâr ve güneş bazlı yenilenebilir enerji üretim teknolojileri detaylı olarak sunulmaktadır. Son olarak, günümüzde enerji teknolojilerinin en önemli parçası haline gelen enerji depolama sistemleri üzerine bir bölüm çalışma içinde bulunmaktadır. Bu çalışma, öğretmenlere \"Dene ve Yap\" öğrenme süreci içerisinde öğrencilerin konuları ele alması yaklaşımıyla oluşturulmuştur. Özellikle deney sürecinde öğrencinin karşılaşacağı sorunlara vereceği çözümler, değişkenlerin belirlemesi ve nasıl değişeceği gibi fikirler, yaparak ve yaşayarak öğrenme sürecini oluşturması bu çalışmanın istenen aşamalarıdır. Enerji teknolojileri başlığı altında verilen bu çalışma diğer Deneyap başlıklarından farklı olarak, konunun içeriği ve farklılığı nedeniyle öğrencilerin en yüksek düzeyde anlama ve kavrama sağlamak hedefi ile 5E öğretim yöntemi kullanılarak tasarlanmıştır. Bu çalışmanın 5E öğrenme döngüsü modeli ile öğrencilerin araştırma sorgulamaya teşvik etmesi hedeflenmektedir.Böylece \"Enerji Teknolojileri\" başlığı altında mühendisliğin temel konularına odaklanılarak, enerji kavramı üzerine açıklama ve tanımlamalar yapılması sağlanacaktır. Analitik bir çerçevede enerji kavramını açık bir şekilde öğretmek, disiplinler arası sorunlar hakkında düşünmesini sağlamak iyi donanımlı yeni nesil bilim insanları ve mühendisler yetiştirmeye yardımcı olacaktır.Publication Open Access A Hydrophobic antireflective and antidust coating with $\text{SiO}_2$ and $\text{TiO}_2$ nanoparticles using a new 3-D printing method for photovoltaic panels(2022-07-01) EKREN, NAZMİ; SAĞLAM, ŞAFAK; Ekren N., Sarkin A. S., Sağlam Ş.The main outdoor factors that reduce the efficiency of the photovoltaic (PV) panel are the reflection and refraction of light, dirt, dust, and organic waste accumulating on the panel surface. In this article, an antireflection, self-cleaning coating was applied on the PV panel cover glass with a new method. With the coating, the surface has been given a hydrophobic feature. As a coating method, a 3-D printer has not been seen in the literature and used as a new method. The electrospinning method has also been tried as an alternative method. Solutions in different combinations were developed using polylactic acid or polymethylmethacrylate polymer, chloroform ($\text{CHCl}_3$) as a solvent, and silicon dioxide ($\text{SiO}_2$) and titanium dioxide ($\text{TiO}_2$) nanoparticles as primary materials in a modified 3-D printer for bioprinting. Five PV panels were obtained by applying different 3-D parameters from three solutions, which have the best results. Coating thicknesses are in the range of 3.12-8.47 mu m. Coated and uncoated PV panels were tested in outdoor conditions for ten-day periods. The power outputs of the PV panels were measured, and their ten-day average efficiency was presented. According to the results, the highest efficiency increase is 8.7%. The highest light transmittance is 88.2% at 550 nm. In addition, hydrophobic properties were observed on all surfaces and the water contact angle was measured as 96.18 degrees.Publication Metadata only Controlling of grid connected photovoltaic lighting system with fuzzy logic(PERGAMON-ELSEVIER SCIENCE LTD, 2010) ERDAL, HASAN; Saglam, Safak; Ekren, Nami; Erdal, HasanIn this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (C) 2009 Elsevier Ltd. All rights reserved.Publication Open Access Transformation of technical education faculties in Turkey in the process of European Union: Faculty of applied sciences(ELSEVIER SCIENCE BV, 2010) ORAL, BÜLENT; Saglam, Safak; Oral, Bulent; Uzunboylu, HCountries education systems unavoidably changes to adapt themselves to innovations because of developing technology and globalization. This perspective technical education faculty position is queried which are established with the aim of educate technical teachers for vocational high schools in Turkey. Faculty of applied sciences model can replace with the technical education faculty that has completed its mission. It is possible to educate engineers with the faculty of applied sciences who has qualified, keep up the technology and has the characteristics necessary for the working life. (C) 2010 Elsevier Ltd. All rights reserved.