Person: SAĞLAM, ŞAFAK
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
SAĞLAM
First Name
ŞAFAK
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Metadata only Systematic review of the data acquisition and monitoring systems of photovoltaic panels and arrays(2022-09-01) KALAY, MUHAMMET ŞAMİL; SAĞLAM, ŞAFAK; KALAY M. Ş. , KILIÇ B., SAĞLAM Ş.Solar energy has increased in its share of global electrical energy production. The increasing reliability of solar energy has positively affected the sustainability of photovoltaic (PV) power plants. A failure in any module in the plant can reduce or interrupt the production of electrical energy, causing significant losses in both efficiency and asset value. Therefore, responding to a fault as quickly as possible in a PV power plant is critical. The ability of the PV plant operator to react to potential faults is directly related to the rapid detection of faulty modules. In this paper, different PV monitoring systems in the literature are investigated extensively from the point of view of the devices and the techniques used to measure PV systems\" current, voltage, solar radiation, and module temper-ature. In particular, the communication methods and data acquisition cards used in monitoring were examined. Remote monitoring technologies quickly detect the location of a malfunction in a large-scale power plant. In this context, traditional wire communication methods, today\"s communication technologies, and the low-cost IoT (Internet of Things) technologies used to monitor the performance of large and small-scale PV power plants are compared in detail. With the advancement of Internet of Things technologies such as Zigbee and LoRa, research on remote wireless monitoring of photovoltaic modules has accelerated in recent years. These technologies are projected to be widely deployed in the near future for the maintenance and fault detection of numerous photovoltaic installations.Publication Metadata only IoT based data acquisition and remote monitoring system for large-scale photovoltaic power plants(2022-05-20) KALAY, MUHAMMET ŞAMİL; SAĞLAM, ŞAFAK; ORAL, BÜLENT; Kalay M. Ş., Kılıç B., Mellit A., Oral B., Sağlam Ş.Normal 0 21 false false false DE X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:\"Table Normal\"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:\"; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; line-height:12.0pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:\"Times New Roman\",serif; mso-ansi-language:EN-US; mso-fareast-language:EN-US;} The amount of solar capacity deployed worldwide has doubled in the past decades. The increasing use of solar energy makes photovoltaic (PV) power plants substantial. In PV power plants, reducing maintenance and operating costs positively affects efficiency. A failure in any module can reduce or interrupt the production of electrical energy, causing significant losses in both efficiency and revenue. Therefore, responding to a fault as quickly as possible in PV power plants is critical. The ability of the PV plant operator to react to potential faults is directly related to the rapid detection of faulty modules. In this paper, IoT based data acquisition and monitoring system is designed to diagnose module failures and remotely monitor for PV power plant\"s performance. The current, voltage, module surface temperature, and solar radiation values are measured for each PV module. These data are transmitted wirelessly to long distances with LoRa modules. All data acquired in the central recording unit device are transferred to the internet, enabling online access and also stored on the memory card.