Person: KORKMAZ, HAYRİYE
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
KORKMAZ
First Name
HAYRİYE
Name
11 results
Search Results
Now showing 1 - 10 of 11
Publication Metadata only Poster: A Mobile Application for Voice and Remote Control of Programmable Instruments(SPRINGER INTERNATIONAL PUBLISHING AG, 2019) YAYLA, AYŞE; Ece, Burak; Yayla, Ayse; Korkmaz, Hayriye; Auer, ME; Langmann, RThe purpose of this work is to add a new feature to bench-type conventional instruments used in Electrical and Electronics Engineering Laboratory which do not have any voice recognition and wireless communication technology. By this way, the user can control these instruments/devices remotely with voice commands and also monitor the results/values in graphical or numerical/text format as well over a mobile device screen. The only limitation is that such instruments should have a driver supported by any software such as NI LabVIEW and a PC connectivity interface such as USB, GPIB or LXI (LAN extensions for Instrumentation). Controlling the instruments (such as oscilloscope or signal generators which are frequently used for training purposes and whose functions are manually set) over a mobile device with voice commands will make life easier for disabled students who especially have difficulties in using their hands.Publication Open Access Performance of Hyperparameters in Prediction with Deep Neural Networks of Electrical Properties of Nano-Coated Glasses Nano-Kaplamali Camlarin Elektriksel zelliklerinin Derin Sinir Aglari Ile Tahmininde Hiper Parametrelerin Performansi(2023-01-01) KORKMAZ, HAYRİYE; Yenginer H., Eraslan S., Gundogdu B., KORKMAZ H.Nano-coated glasses are widely used in different fields such as industry, transportation and architectural structures. After these glasses are obtained by various thin film coating applications, they are subjected to the heat treatment process (tempering, bending, etc.), which is considered as a secondary process. Both of these two-stage processes lead to changes in the electrical and mechanical properties of the final product. While electrical properties such as transmittance, coated surface reflection and uncoated surface reflection values obtained as a result of the first stage can be calculated by analytical methods; the chaotic nature of the second stage does not allow these parameters to be calculated with similar methods. Therefore, in this study, a multi-input-multi-output deep neural network structure was designed for the estimation of the electrical properties of the nano-coated glass type produced for commercial use in architectural fields. Moreover, The dataset with 64 different coating types was augmented by adding noise technique and the performances of the hyperparameters in prediction success were compared. The performance of the network structure was measured by the mean absolute error, mean squared error, and coefficient of determination metrics. The designed network structure was tested on 16 samples and according to the results obtained, it was observed that the best performance was achieved with the Adadelta learning algorithm and ReLU activation function on the augmented data set.Publication Metadata only A Remotely Accessible and Configurable Electronics Laboratory Implementation by Using LabVIEW(WILEY, 2010) KORKMAZ, HAYRİYE; Azaklar, Sezen; Korkmaz, HayriyeIn this article, selected applications from the experiments included in undergraduate Electronics and Computer Education curriculum are transformed into remotely accessible and configurable manner. The experiment user interfaces and publishing over the internet is developed in LabVIEW. These experiments are suitable for online conduction where students are either in-class or laboratory on-campus and/or at home. In this work, four different remotely configurable experiment modules are designed and implemented. Remotely configurable facility in a predefined range is performed by using switches activated by DO terminals of a data acquisition card through a web-based application. In this way, students can select the desired experiment from the ones stored on the PCB, adjust the voltage applied to the input terminal of the circuit and change the circuit elements values by using telepresence methodology. (C) 2009 Wiley Periodicals, Inc. Comput Appl Eng Educ 18: 709-720, 2010; View this article online at wileyonlinelibrary.com; DOI 10.1002/cae.20276Publication Open Access A novel monitoring dashboard and hardware implementation simplifying the remote access in industry(2023-07-18) KORKMAZ, HAYRİYE; Korkmaz H., Demir E.In today’s world where technology is developing with a great speed, it is getting harder day by day to adapt or include changes on new technology to the processes in facilities. Insisting on using conventional solutions adopted so far in industrial facilities cause problems to compensate the changing fast consumption needs of today. Adopting recent technologies improves the maintenance and troubleshooting processes of the facilities, accelerates the production and increases the quality of production. In this way, technology based smart systems can provide the devices or machines with the skills required for problem solving and system development in the industry. In this study, a remote monitoring and control application is proposed for a frequency inverter which is widely used and critical device for motor driving in industrial facilities is discussed and a novel internet of things (IoT) based communication gateway is developed. In this way, it is intended to improve the problem solving skills of field personnel by contributing with remote support.Publication Metadata only Development of a remote laboratory for an electronic circuit design and analysis course with increased accessibility by using speech recognition technology(WILEY, 2021) SARIKAŞ, ALİ; Yayla, Ayse; Korkmaz, Hayriye; Buldu, Ali; Sarikas, AliWhen the curricula of engineering undergraduate programs are examined, it can be seen that experimentation plays a very important role and the learning outcomes of the courses are mostly dependent on practical abilities. However, there may be a few who cannot use their hands permanently or temporarily among the students who are attending these courses. Therefore, the participation of disabled students in this part of the course has always been a problem. In this paper, a remote laboratory application that aims to increase the accessibility of electronic circuit design and analysis courses by using speech recognition technology is introduced. This laboratory is designed for hands-free operation and enables students to analyze the electronic circuits by speaking. Google Web Speech API was used for speech recognition and the user interface was designed using Adobe Flash Professional. The parameters are sent to the ASP.NET page by using ActionScript 2.0 programming language. The application developed by using C# programming language enables programming the experimental hardware that includes a signal generator, a Raspberry Pi 2 with a camera, an oscilloscope, and a new test card. In the Raspberry Pi 2, Python programming language was used to select the desired experiment from those present on the board and to control digitally programmable circuit components such as digital potentiometers or parameters such as the DC reference voltage level. When the student successfully completes the predefined experimental procedures, an automatically generated e-mail is sent to the instructor including the student's username, log-in time, the oscilloscope screenshots, and ideal experimental results.Publication Open Access A Novel Monitoring Dashboard And Hardware Implementation Simplifying The Remote Access In Industry(2023-01-01) KORKMAZ, HAYRİYE; Demir E., KORKMAZ H.In today\"s world where technology is developing with a great speed, it is getting harder day by day to adapt or include changes on new technology to the processes in facilities. Insisting on using conventional solutions adopted so far in industrial facilities cause problems to compensate the changing fast consumption needs of today. Adopting recent technologies improves the maintenance and troubleshooting processes of the facilities, accelerates the production and increases the quality of production. In this way, technology based smart systems can provide the devices or machines with the skills required for problem solving and system development in the industry. In this study, a remote monitoring and control application is proposed for a frequency inverter which is widely used and critical device for motor driving in industrial facilities is discussed and a novel internet of things (IoT) based communication gateway is developed. In this way, it is intended to improve the problem solving skills of field personnel by contributing with remote support.Publication Metadata only Efficient Deployment of Wireless Sensor Nodes with Evolutionary Approaches(2022-01-01) KORKMAZ, HAYRİYE; Birtane Akar S., KORKMAZ H., Sahingoz O. K.© 2022 IEEE.In previous WSN studies, it was observed that there are two common methods used in coverage area calculation: 1) image processing technique or 2) mathematical formulas. calculation of the coverage area, if the sensing ranges of the mobile nodes intersect (overlap) each other, the processing time increases while the calculation result is wrong. In this study, a new method is proposed to calculate the coverage area with relatively high accuracy, including the overlap conditions, but in a shorter time. In this method, the points that were placed as targets to be tracked in the Region of Interest (ROI) in the previous studies are now used in a different way. All covered points by any node are counted to calculate the area. However, in this case, the number of points placed in the area should be much higher than in the previous cases. Coverage performance is calculated by counting the points covered by the WSN nodes and dividing them by the total number of points defined initially. (Coverage rate) First of all, to decide the experiment\"s initial conditions, 57 different cases were simulated. Different number of sensor nodes with different radii (25, 50, 100, 200) was considered and then the average of the error rate of all cases was calculated. The lowest error value was obtained in the case of the 2000×2000 area. Therefore, an area of 2000×2000 was preferred in the next steps. It can be concluded that, this method is a promising method to calculate the coverage rate in WSNs.Publication Open Access Hareketli hedef takip sisteminde genelleştirilmiş Hough dönüşümü (GHT) ve normalleştirilmiş çapraz ilinti (NCC) yöntemlerini ardışıl kullanarak eşleşme doğruluğunun arttırılması(2018-02-01) KORKMAZ, HAYRİYE; MUSTAFA YAĞIMLI;HAYRİYE KORKMAZ;M Oğuzhan ÜNBu çalışmada; hedefin daha iyi tahmin edilmesinde, hedefin ve şablon piksellerinin yoğunlukları arasında ilinti puanı hesaplanmıştır. Görünüm değişikliklerini ele almak için yapılan işlemde, hedefin şablonları 12 değişik görünüşten alınmıştır. Resmin merkez noktası ile sınırlayıcı kutunun merkez noktası arasındaki mesafe hesaplanmış ve bir hata sinyali olarak dönüştürülmüştür. Hata sinyalini kullanarak servo motorlar hedefin merkezileştirilmesi için kameranın görüş açısını değiştirmeye yönlendirilmiştir. Böylece hedef, değişen bir geçmişe sahip gerçek zamanlı olarak tanınmış ve izlenmiştir.Publication Open Access Personal computer-based visible spectrophotometer design(SAGE PUBLICATIONS LTD, 2018-09) KORKMAZ, HAYRİYE; Boecekci, Veysel Goekhan; Ozyetgin, Osman; Toker, Kenan; Korkmaz, HayriyeBackground It is possible to see a number of spectrophotometers produced by commercial purposes developed in line with the technical advices identified by the International Commission on Illumination (CIE) in universities' chemistry labs. These devices are employed in measuring and testing materials with unidentified characteristics as well as reporting the results. However, these systems are not modular in design and do not allow updates or modifications. Moreover, when the literature is reviewed, it can be seen that the researches on computer-controlled devices is limited. It is also reported that the devices with user interfaces bring advantages to researchers in terms of time efficiency and safety. Methods In this study, a computer-controlled, modular and low-cost spectrophotometer is designed to measure material densities contained within liquid samples. The proposed system is composed of a main unit, a data acquisition unit and a user interface. All tasks and relevant arrangements involved in a spectrophotometer application are controlled through an interface developed on LabVIEW graphical development platform; the results of the measurements can be monitored in real time, and it is also possible to store data. Thanks to the modular design, it became possible to change and update the relevant stage as needed. The waveform filter can be selected specifically as visible range, ultraviolet range or both depending on the application. Results The experiment was conducted in the visible range and a waveform filter between 400 and 700 nm was used. In the experiments, an easily accessible materials-methylene blue and copper sulfate solutions-were preferred as samples. For these solutions, the waveforms that give the best absorption values were identified and the density was measured at those values. Furthermore, the nonlinearity and repeatability characteristics of the proposed spectrophotometer were analyzed. For this purpose, measured values were compared with the acquired values from another commercial instrument that is already used in medical field. Measurements were repeated 50 times for copper sulfate and 43 times for methylene blue solutions. Conclusions After statistical analysis, it was observed that the reliability of the proposed system is high.Publication Metadata only Development of a driving cycle for Istanbul bus rapid transit based on real-world data using stratified sampling method(PERGAMON-ELSEVIER SCIENCE LTD, 2019) ERDAL, HASAN; Kaymaz, Habib; Korkmaz, Hayriye; Erdal, HasanEnvironmental as well as financial issues forces to develop clean, efficient, and sustainable vehicles which constitutes an integral part of our daily life for urban transportation. Nevertheless, exhaust emissions of conventional internal combustion engine vehicles are the major source of global warming lead greenhouse effect. One solution for this issue is hybridization/electrification of the vehicles. One of the most important tools which can help to test performances of technical solutions systematically is driving cycles representing real driving conditions for vehicle emissions testing and estimation. When the history of the driving cycles was reviewed, it can be seen that there were big changes from constructing synthetically to real world cycles and from emission-focused cycles to emission, pollution and fuel consumption focused cycles. And now, a new application such as hybridization and/or electrification has been added to driving cycles. Main aim of this study is to create a practical driving cycle for Bus Rapid Transit (BRT) vehicles. To do this, characteristic driving parameters such as speed, distance, time, acceleration have been determined first. Data acquisition from conventional vehicles running on Istanbul route was performed and then data were analysed. A driving cycle was developed by using Proportional Stratified Sampling (PSS) technique. Comparison between constructed driving cycle and the real-world data show that difference is less than 10%. And so, it can be concluded that proposed driving cycle was acceptable.