Person:
SARIOĞLU, CEVAT

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

SARIOĞLU

First Name

CEVAT

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Photoelectrochemical performance of thermally sulfurized CdxZn1-xS photoanode: Enhancement with reduced graphene oxide support
    (PERGAMON-ELSEVIER SCIENCE LTD, 2020) ÖZKAYA, ALİ RIZA; Ayaz, RanaMuhammad Zunain; Akyuz, Duygu; Uguz, Ozlem; Tansik, Irem; Sarioglu, Cevat; Karaca, Fatma; Ozkaya, Ali Riza; Koca, Atif
    In this study, photoelectrochemical performance of reduced graphene oxide (RGO)-CdxZn1-xS compos-ites, which were synthesized through a novel two-steps thermal sulfurization process by using elemental sulfur, was reported. This is the first time that the two-step thermal sulfurization process with elemental sulfur for the preparation of photoanode based on RGO-CdxZn1-xS. The electrodes exhibited high photostability and photocurrent response in the presence of visible light. The presence of RGO in CdxZn1-xS as electron collector and transporter increased the photocurrents approximately 40%. Among the RGOCdxZn1-xS composites, RGO-CdS photoanode yielded an extremely high photocurrent density of 6.5 mAcm(-2) with the rate of hydrogen production rate of 551.1mmolh(-1)cm(-2). This value of photocurrent density is almost 89% of its theoretical value. This is the maximum attained photocurrent density with superior stability in comparison with related literature. (c) 2020 Elsevier Ltd. All rights reserved.
  • Publication
    Photocatalytic-electrocatalytic dual hydrogen production system
    (PERGAMON-ELSEVIER SCIENCE LTD, 2016) ÖZKAYA, ALİ RIZA; Aydemir, Mehmet; Akyuz, Duygu; Agopcan, Burag; Sener, M. Kamm; Albayrak, Fatma Karaca; Sarzoglu, Ceuat; Koca, Atif
    In this paper, in order to produce efficient and low cost hydrogen by using alternative energies with simple ways; a photocatalytic electrocatalytic dual hydrogen production system (PEHPS) which combined discontinuous photocatalytic and electrocatalytic systems in one continuous dual system was designed and optimized. In the photocatalytic chamber of PEHPS, nano-sized Cd(1-x)ZnxS/Pt photocatalysts were utilized. The synthesized Cd(1-x)ZnxS/Pt photocatalysts were characterized with scanning electron microscopy (SEM), X-Ray Diffraction (XRD) and diffuse reflectance UV Vis spectroscopy. The most active photocatalyst having CdZnS2 core and 10% Pt shell showed 24.0 mLg(-1) h(-1) (963.6 gmol g 1 h(-1)) hydrogen evolution rate with 4.01% solar energy conversion efficiency (SECE%). S2O3-2 produced in the photocatalytic chamber of PEHPS was used as redox species in the electrocatalytic chamber. This process decreased the cell potential of water electrolysis from 2.50 V to 1.70 V on glassy carbon electrodes. Moreover, usage of electro-polymerized metallophthalocyanines (Poly-MPc) as cathode active electrocatalyst, the over-potential of cathode of the electrocatalytic chamber for hydrogen reduction reaction decreased by 0.230 V. (C) 2015 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.