Person:
SARIOĞLU, CEVAT

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

SARIOĞLU

First Name

CEVAT

Name

Search Results

Now showing 1 - 3 of 3
  • Publication
    Photocatalytic-electrocatalytic dual hydrogen production system
    (PERGAMON-ELSEVIER SCIENCE LTD, 2016) ÖZKAYA, ALİ RIZA; Aydemir, Mehmet; Akyuz, Duygu; Agopcan, Burag; Sener, M. Kamm; Albayrak, Fatma Karaca; Sarzoglu, Ceuat; Koca, Atif
    In this paper, in order to produce efficient and low cost hydrogen by using alternative energies with simple ways; a photocatalytic electrocatalytic dual hydrogen production system (PEHPS) which combined discontinuous photocatalytic and electrocatalytic systems in one continuous dual system was designed and optimized. In the photocatalytic chamber of PEHPS, nano-sized Cd(1-x)ZnxS/Pt photocatalysts were utilized. The synthesized Cd(1-x)ZnxS/Pt photocatalysts were characterized with scanning electron microscopy (SEM), X-Ray Diffraction (XRD) and diffuse reflectance UV Vis spectroscopy. The most active photocatalyst having CdZnS2 core and 10% Pt shell showed 24.0 mLg(-1) h(-1) (963.6 gmol g 1 h(-1)) hydrogen evolution rate with 4.01% solar energy conversion efficiency (SECE%). S2O3-2 produced in the photocatalytic chamber of PEHPS was used as redox species in the electrocatalytic chamber. This process decreased the cell potential of water electrolysis from 2.50 V to 1.70 V on glassy carbon electrodes. Moreover, usage of electro-polymerized metallophthalocyanines (Poly-MPc) as cathode active electrocatalyst, the over-potential of cathode of the electrocatalytic chamber for hydrogen reduction reaction decreased by 0.230 V. (C) 2015 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Publication
    A new sulfur source for the preparation of efficient Cd(1-x)ZnxS photocatalyst for hydrogen evolution reaction
    (PERGAMON-ELSEVIER SCIENCE LTD, 2018) KOCA, ATIF; Agopcan, Burag; Akyuz, Duygu; Karaca, Fatma; Sarioglu, Cevat; Koca, Atif
    Cd(1-x)ZnxS hexagonal crystals were for the first time synthesized via thermal sulfurization of Cd(1-x)ZnxO particles by using the elemental sulfur as the sulfur source. A temperature profile in the tube furnace was designed to obtain the proposed particle size, crystal structure, and morphology. Synthesized Cd(1-x)ZnxS particles were characterized with scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and diffuse reflectance UV Vis spectroscopy. It was seen that there was a polynomial relationship between the band gap and Cd: Zn ratio in the Cd(1-x)ZnxS. Cd0.58Zn023S has shapeless particles between 250 and 500 nm particle size. It was observed that particle size decreased as Zn ratio increased in the Cd(1-x),ZnxS. Cd(1-x),ZnxS hexagonal crystals had nano step surfaces which were one of the desired factors for achieving high photocatalytic efficiency. Finally, Synthesized Cd(1-x.)ZnxS particles were used as photocatalysts for the photocatalytic hydrogen evolution reaction (HER). Cd0.77Zn0.23S structure behaved the most active one among the different compositions of Cd(1-x)ZnxS nanoparticles. Cd0.77Zn0.23S showed almost high photocatalytic activity for HER with 1927 mu mol g(-1) h(-1) hydrogen evolution rate without using noble co-catalyst such as platinum. This good photocatalytic activity was believed to be due to the nanostep surface structure Cd0.77Zn0.23S which led the separation of the reduction and oxidation reaction sites and inhibited the recombination of the generated electrons and holes. Observation of considerably high photocurrent and open circuit potentials and changes in the electrochemical impedance spectroscopy responses supported the photocatalytic activity of the Cd0.77Zn0.23S particles. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Publication
    Metal chalcogenide based photocatalysts decorated with heteroatom doped reduced graphene oxide for photocatalytic and photoelectrochemical hydrogen production
    (PERGAMON-ELSEVIER SCIENCE LTD, 2019) ÖZKAYA, ALİ RIZA; Akyuz, Duygu; Ayaz, Rana Muhammad Zunain; Yilmaz, Seda; Uguz, Ozlem; Sarioglu, Cevat; Karaca, Fatma; Ozkaya, Ali Riza; Koca, Atif
    Heteroatom (N, B and P) doped reduced graphene oxide (RGO)-metal chalcogenide nanocomposites (RGO-Cd0.60Zn0.40S) were prepared by the solvothermal method, and then they were characterized with X-ray diffraction, Raman spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, UV-Vis diffuse reflectance spectroscopy and photoluminescence techniques. Doping of RGO with heteroatoms of N, B and P increased charge-transfer capability of nanocomposites and thus, improved both photocatalytic and photoelectrochemical hydrogen production activities of them. N-doped RGO-Cd0.60Zn0.40S photocatalyst exhibited the highest photocatalytic hydrogen production rate (1114 mu molh(-1) g(-1)) in photocatalytic (PC) system amongst other and it was 1.5 times higher than that of RGO-Cd0.60Zn0.40S photocatalyst. Having a current density of 0.92 mAcm(-2), photoelectrochemical hydrogen production activity of N-RGO-Cd0.60Zn0.40S electrode was found to be 3 times higher than RGO-Cd0.60Zn0.40S photoelectrode without any applied bias potential under visible light irradiation in photoelectrochemical system. In general, these results clearly showed that heteroatom doping of RGO led to promising materials for renewable hydrogen production in the photocatalytic and photoelectrochemical systems. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.