Person: YILMAZ, BETÜL
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
YILMAZ
First Name
BETÜL
Name
6 results
Search Results
Now showing 1 - 6 of 6
Publication Metadata only Cathepsins D and L reduce the toxicity of advanced glycation end products(ELSEVIER SCIENCE INC, 2012) YILMAZ, BETÜL; Grimm, Stefanie; Horlacher, Melanie; Catalgol, Betul; Hoehn, Annika; Reinheckel, Thomas; Grune, TilmanAdvanced glycation end product-modified proteins are known for accumulating during aging and in several pathological conditions such as diabetes, renal failure, and neurodegenerative disorders. There is little information about the intracellular fate of endocytosed advanced glycation end products (AGES) and their influence on proteolytic systems. However, it is known that the lysosomal system is impaired during aging. Therefore, undegraded material may accumulate and play a considerable role in the development of diverse diseases. To investigate if AGEs can be degraded and to test whether they accumulate because of impaired lysosomal proteases we studied the effects of advanced glycation end products on the endosomal lysosomal system. Five different types of AGEs were generated by bovine serum albumin incubation with glyoxal, methylglyoxal, glucose, fructose, and ribose. The first experiments revealed the uptake of AGEs by the macrophage cell line RAW 264.7. Further investigations demonstrated an increase in cathepsin D and L activity and an increase in mature cathepsins D and L Increased activities were accompanied by the presence of more lysosomes, measured by staining with LysoTracker blue. To specify the roles of cathepsins D and L we used knockout cells to test the roles of both cathepsins on the toxicity of advanced glycation end products. In summary we conclude that both cathepsins are required for a reduction in advanced glycation end product-induced cytotoxicity. (C) 2012 Elsevier Inc. All rights reserved.Publication Metadata only Chromatin repair after oxidative stress: Role of PARP-mediated proteasome activation(ELSEVIER SCIENCE INC, 2010) YILMAZ, BETÜL; Catalgol, Betul; Wendt, Brigitte; Grimm, Stephanie; Breusing, Nicolle; Ozer, Nesrin Kartal; Grune, TilmanOxidative stress is an inevitable process in the nucleus, especially in antitumor chemotherapy, and adaptation by defense mechanisms seems to be one element in the development of long-term resistance to many chemotherapeutic drugs. In this study, a potential chromatin repair mechanism during oxidative stress was investigated in HT22 cells. The 20S proteasome has been shown to be largely responsible for the degradation of oxidatively modified histone proteins in the nucleus. Poly(ADP-ribosyl)ation reactions also play an important role in DNA repair as a consequence of oxidative damage and single-strand breaks. Such a reaction may occur also with the 20S proteasome-with a known increase in enzymatic activity-and also with histones-reducing their proteolytic susceptibility as shown for the first time here. After hydrogen peroxide treatment of HT22 cells, degradation of the model peptide substrate suc-LLVY-MCA and degradation of oxidized histones by nuclear proteasome increased. During the removal of protein carbonyls, single-strand breaks and 8-hydroxy-2'-deoxyguanosine, proteasome, and poly(ADP-ribose) polymerase-1 enzymes were shown to play tightly interacting roles. Our results following the repair of oxidative damage show the proteolytic activation of proteasome concerning poly(ADP-ribosyl)ation together with a decline in poly(ADP-ribosyl)ation of oxidized histones, leading to a selective recognition of oxidatively modified histones. (C) 2009 Elsevier Inc. All rights reserved.Publication Metadata only Age-related loss of stress-induced nuclear proteasome activation is due to low PARP-1 activity(ELSEVIER SCIENCE INC, 2011) YILMAZ, BETÜL; Bakondi, Edina; Catalgol, Betul; Bak, Istvan; Jung, Tobias; Bozaykut, Perinur; Bayramicli, Mehmet; Ozer, Nesrin Kartal; Grune, TilmanChanges in protein turnover are among the dominant metabolic changes during aging. Of special importance is the maintenance of nuclear protein homeostasis to ensure a coordinated cellular metabolism. Therefore, in the nucleus a special PARP-1-mediated mechanism of proteasomal activation exists to ensure a rapid degradation of oxidized nuclear proteins. It was already demonstrated earlier that the cytosolic proteasomal system declines dramatically with aging, whereas the nuclear proteasome remains less affected. We demonstrate here that the stress-mediated proteasomal activation in the nucleus declines during replicative senescence of human fibroblasts. Furthermore, we clearly show that this decline in the PARP-1-mediated proteasomal activation is due to a decline in the expression and activity of PARP-1 in senescent fibroblasts. In a final study we show that this process also happens in vivo, because the protein expression level of PARP-1 is significantly lower in the skin of aged donors compared to that of young ones. Therefore, we conclude that the rate-limiting factor in poly(ADP-ribose)-mediated proteasomal activation in oxidative stress is PARP-1 and not the nuclear proteasome itself. (C) 2010 Elsevier Inc. All rights reserved.Publication Metadata only Regulation of protein turnover by heat shock proteins(ELSEVIER SCIENCE INC, 2014) YILMAZ, BETÜL; Bozaykut, Perinur; Ozer, Nesrin Kartal; Karademir, BetulProtein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system. (C) 2014 Elsevier Inc. All rights reserved.Publication Metadata only Basic mechanisms in endoplasmic reticulum stress and relation to cardiovascular diseases(ELSEVIER SCIENCE INC, 2015) SÖZEN, AHMET ERDİ; Sozen, Erdi; Karademir, Betul; Ozer, Nesrin KartalThe folding process is an important step in protein synthesis for the functional shape or conformation of the protein. The endoplasmic reticulum (ER) is the main organelle for the correct folding procedure, which maintains the homeostasis of the organism. This process is normally well organized under unstressed conditions, whereas it may fail under oxidative and ER stress. The unfolded protein response (UPR) is a defense mechanism that removes the unfolded/misfolded proteins to prevent their accumulation, and two main degradation systems are involved in this defense, including the proteasome and autophagy. Cells decide which mechanism to use according to the type, severity, and duration of the stress. If the stress is too severe and in excess, the capacity of these degradation mechanisms, proteasomal degradation and autophagy, is not sufficient and the cell switches to apoptotic death. Because the accumulation of the improperly folded proteins leads to several diseases, it is important for the body to maintain this balance. Cardiovascular diseases are one of the important disorders related to failure of the UPR. Especially, protection mechanisms and the transition to apoptotic pathways have crucial roles in cardiac failure and should be highlighted in detailed studies to understand the mechanisms involved. This review is focused on the involvement of the proteasome, autophagy, and apoptosis in the UPR and the roles of these pathways in cardiovascular diseases. (C) 2014 Elsevier Inc. All rights reserved.Publication Metadata only Effects of vitamin E on peroxisome proliferator-activated receptor gamma and nuclear factor-erythroid 2-related factor 2 in hypercholesterolemia-induced atherosclerosis(ELSEVIER SCIENCE INC, 2014) SÖZEN, AHMET ERDİ; Bozaykut, Perinur; Karademir, Betul; Yazgan, Burak; Sozen, Erdi; Siow, Richard C. M.; Mann, Giovanni E.; Ozer, Nesrin KartalAtherosclerosis and associated cardiovascular complications such as stroke and myocardial infarction are major causes of morbidity and mortality. We have previously reported a significant increase in mRNA levels of the scavenger receptor CD36 in aortae of cholesterol-fed rabbits and shown that vitamin E treatment attenuated increased CD36 mRNA expression. In the present study, we further investigated the redox signaling pathways associated with protection against atherogenesis induced by high dietary cholesterol and correlated these with CD36 expression and the effects of vitamin E supplementation in a rabbit model. Male albino rabbits were assigned to either a control group fed with a low vitamin E diet alone or a test group fed with a low vitamin E diet containing 2% cholesterol in the absence or presence of daily intramuscular injections of vitamin E (50 mg/kg). To elucidate the mechanisms by which vitamin E supplementation alters the effects of hypercholesterolemia in rabbit aortae, we measured peroxisome proliferator-activated receptor gamma (PPAR gamma), ATP-binding cassette transporter A1 (ABCA1), and matrix metalloproteinase-1 (MMP-1) mRNA levels by quantitative RT-PCR and the expression of MMP-1, nuclear factor-erythroid 2-related factor 2 (Nrf2), and glutathione S-transferase alpha (GST alpha) protein by immunoblotting. The increased MMP-1 and decreased GSTa expression observed suggests that a cholesterol-rich diet contributes to the development of atherosclerosis, whereas vitamin E supplementation affords protection by decreasing MMP-1 and increasing PPAR gamma, GSTa, and ABCA1 levels in aortae of rabbits fed a cholesterol-rich diet. Notably, protein expression of Nrf2, the antioxidant transcription factor, was increased in both the cholesterol-fed and the vitamin E-supplemented groups. Although Nrf2 activation can promote CD36-mediated cholesterol uptake by macrophages, the increased induction of Nrf2-mediated antioxidant genes is likely to contribute to decreased lesion progression. Thus, our study demonstrates that Nrf2 can mediate both pro- and antiatherosclerotic effects. (C) 2014 Elsevier Inc. All rights reserved.