Person: YILMAZ, BETÜL
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
YILMAZ
First Name
BETÜL
Name
6 results
Search Results
Now showing 1 - 6 of 6
Publication Metadata only Electrospun multilayer nanofiber based intelligent drug delivery and release system(2018-07-18) OKTAR, FAİK NÜZHET; YILMAZ, BETÜL; CESUR, SÜMEYYE; GÜNDÜZ, OĞUZHAN; Ege Z. R., Oktar F. N., Akan A., Kuruca D. S., Yılmaz B., Erdemir G., Cesur S., Gündüz O.Publication Metadata only In vitro evaluation of biomaterials for neural tissue engineering(Elsevier Science, Oxford/Amsterdam , 2023-04-01) ŞAHİN, ALİ; YILMAZ, BETÜL; Şahin A., Çıkı B., Yılmaz B.Publication Metadata only Past, present, and future of therapies for pituitary neuroendocrine tumors: need for omics and drug repositioning guidance(2022-03-01) ERDOĞAN, ONUR; ARĞA, KAZIM YALÇIN; BOZKURT, SÜHEYLA; BAYRAKLI, FATİH; YILMAZ, BETÜL; TURANLI, BESTE; Aydin B., Yildirim E., ERDOĞAN O., ARĞA K. Y., Yilmaz B., BOZKURT S., BAYRAKLI F., TURANLI B.Innovation roadmaps are important, because they encourage the actors in an innovation ecosystem to creatively imagine multiple possible science future(s), while anticipating the prospects and challenges on the innovation trajectory. In this overarching context, this expert review highlights the present unmet need for therapeutic innovations for pituitary neuroendocrine tumors (PitNETs), also known as pituitary adenomas. Although there are many drugs used in practice to treat PitNETs, many of these drugs can have negative side effects and show highly variable outcomes in terms of overall recovery. Building innovation roadmaps for PitNETs\" treatments can allow incorporation of systems biology approaches to bring about insights at multiple levels of cell biology, from genes to proteins to metabolites. Using the systems biology techniques, it will then be possible to offer potential therapeutic strategies for the convergence of preventive approaches and patient-centered disease treatment. Here, we first provide a comprehensive overview of the molecular subtypes of PitNETs and therapeutics for these tumors from the past to the present. We then discuss examples of clinical trials and drug repositioning studies and how multi-omics studies can help in discovery and rational development of new therapeutics for PitNETs. Finally, this expert review offers new public health and personalized medicine approaches on cases that are refractory to conventional treatment or recur despite currently used surgical and/or drug therapy.Publication Metadata only Acute myeloid leukemia: New multiomics molecular signatures and implications for systems medicine diagnostics and therapeutics innovation(2022-07-01) ARĞA, KAZIM YALÇIN; TURANLI, BESTE; YILMAZ, BETÜL; Kelesoglu N., Kori M., TURANLI B., ARĞA K. Y., Yilmaz B., Duru O. A.Acute myeloid leukemia (AML) is a common, complex, and multifactorial malignancy of the hematopoietic system. AML diagnosis and treatment outcomes display marked heterogeneity and patient-to-patient variations. To date, AML-related biomarker discovery research has employed single omics inquiries. Multiomics analyses that reconcile and integrate the data streams from multiple levels of the cellular hierarchy, from genes to proteins to metabolites, offer much promise for innovation in AML diagnostics and therapeutics. We report, in this study, a systems medicine and multiomics approach to integrate the AML transcriptome data and reporter biomolecules at the RNA, protein, and metabolite levels using genome-scale biological networks. We utilized two independent transcriptome datasets (GSE5122, GSE8970) in the Gene Expression Omnibus database. We identified new multiomics molecular signatures of relevance to AML: miRNAs (e.g., mir-484 and miR-519d-3p), receptors (ACVR1 and PTPRG), transcription factors (PRDM14 and GATA3), and metabolites (in particular, amino acid derivatives). The differential expression profiles of all reporter biomolecules were crossvalidated in independent RNA-Seq and miRNA-Seq datasets. Notably, we found that PTPRG holds important prognostication potential as evaluated by Kaplan-Meier survival analyses. The multiomics relationships unraveled in this analysis point toward the genomic pathogenesis of AML. These multiomics molecular leads warrant further research and development as potential diagnostic and therapeutic targets.Publication Metadata only Combination of second-generation proteasome inhibitor carfilzomib with bortezomib in four different breast cancer cell lin(2022-01-01) YILMAZ GÖLER, AYŞE MİNE; ŞAHİN, ALİ; YILMAZ, BETÜL; Altundag E. M., Yilmaz A. M., Sahin A., Yilmaz B.Background: Proteasome inhibitors target different pathways in cells and therefore are promising drugs in cancer therapy. The use of these inhibitors is approved mainly in hematological cancers, and recently many clinical trials and preclinical studies have been conducted on efficacy in solid tumors. Carfilzomib is a second-generation inhibitor and was developed to decrease the side effects of bortezomib. Although there are many valid therapies for breast cancer, resistance and recurrence are inevitable in many cases and the proteasomal system plays an important role in related pathways. Objective: This study is a preliminary work to evaluate the combined effects of bortezomib and carfilzomib in four different breast cancer cells. Methods: MDA-MB-231, MCF-7, UACC-2087, and SKBR-3 cell lines were used. Cell viability was determined using bortezomib and carfilzomib alone and in combination. Combination effect values were determined using the Chou-Talalay method. Apoptosis, proteasome activity, cleaved PARP, and HSP70 expressions were analyzed in the determined doses. Results: The response to the combination of the two inhibitors was different in four cell lines. Apoptosis was significantly higher in combination groups compared to carfilzomib in three cell lines except for SKBR-3, and higher in the combination group compared to bortezomib only in UACC-2087. Combination decreased cleaved PARP levels in MDA-MB-231 and MCF-7 and increased SKBR-3 compared to bortezomib. HSP70 levels decreased in combination with UACC-2087 and SKBR-3 compared to carfilzomib. Conclusion: Taken together, the combination of the two inhibitors was more apoptotic compared to carfilzomib and apoptosis was higher only in UACC-2087 compared to bortezomib. This apoptosis data can not be directly correlated to the degree of proteasome inhibition, PARP cleavage, and HSP70 response.Publication Metadata only Driving precision oncology to clinical practice: The road ahead from biomarker validation to clinical decision systems(2022-06-01) ARĞA, KAZIM YALÇIN; YILMAZ, BETÜL; Yilmaz B., ARĞA K. Y.