Person: VARGÜN, MUSTAFA
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
VARGÜN
First Name
MUSTAFA
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Investigation of performance, combustion and emission characteristics in a diesel engine fueled with methanol/ethanol/nHeptane/diesel blends(2022-10-01) VARGÜN, MUSTAFA; SAYIN, CENK; YILMAZ, İLKER TURGUT; Vargün M., Yılmaz İ. T., Sayın C.One of the important reasons of exhaust emissions harmful to the environment and human health is the use of fossil fuels in internal combustion engines as energy resources. In this study, in order to research for cleaner fuel resources and to reduce dependence on fossil fuels, 20% methanol, ethanol and n-heptane fuels added by volume to fossil-based diesel fuel. The effects on engine performance, combustion and exhaust emission characteristics were investigated in a diesel engine with a 4-cylinder common rail injection system, at different engine loads (40 Nm and 80 Nm) and different engine speeds (1500 rpm, 1600 rpm, 1700 rpm and 1800 rpm). The maximum brake thermal efficiency (BTE) value was obtained as 43% with diesel-methanol (M20) mixed fuel at 1800 rpm at 80 Nm engine load. Brake specific fuel consumption (BSFC) values improved in all fuel types with the increase in engine load. In all test conditions, the highest maximum cylinder gas pressure (CPmax) value was obtained with M20 fuel as 114.3 bar, while the highest cumulative heat release (CHRmax) value was determined as 811.7 J with diesel-nheptane (H20) fuel. Compared to diesel fuel (D100), the use of alcohol-diesel fuel mixtures resulted in longer ignition delay (ID) and shortened combustion duration (CD). In general, a significant reduction in carbon dioxide (CO2) emissions has been observed with the use of blended fuels. As a result of the increase in engine the load, a decrease in HC emissions was observed for all test fuels. When compared to D100 fuel, oxygen (O-2) and nitrogen oxide (NO) emissions were increased with the use of diesel-methanol (M20) and diesel-ethanol (E20) fuels, while O-2\ and NO emissions were decreased with the use of diesel-nheptane fuel. (C) 2022 Elsevier Ltd. All rights reserved.Publication Open Access Experimental investigation of combustion and exhaust emission values in a diesel engine using ethanol-butan-2-ol-diesel fuel blends(2022-09-01) VARGÜN, MUSTAFA; SAYIN, CENK; Vargün M., Özsezen A. N., Hürpekli M., Sayın C.Ethanol and petroleum-based diesel fuel (PBDF) blends have been extensively tested on diesel engines as an alternative fuel without the use of any co-solvents. However, there is not enough information about the combustion noise and products of CO2, CH4 and NH3 that are sourced from 2-butanol used as co-solvent to prevent phase separation between ethanol and PBDF. The present study aims to investigate the effect of ethanol-butan-2-ol-diesel fuel blends on combustion phenomenon and CO2, CH4 and NH3 emission characteristics under different operating conditions of diesel engine. In this study, homogeneity of ethanol and PBDF fuel mixture was achieved by using butan-2-ol (2-butanol). First, engine tests were conducted with the base calibration strategy of injection timing. Later, the tests were conducted by advancing and retarding injection timing to observe the effects of the injection timing on the combustion and emission at different engine speeds. The test results showed an increase in combustion noise with the use of alcohol-PBDF blends. In the tests, the maximum combustion noise was monitored as 92.7 dB with the use of E10B2 at the engine speed of 1400 rpm. It was observed that the use of alcohol-PBDF fuels was much more effective in reducing NH3 and CO emissions according to the change in fuel injection timing. In the tests, 50% or more reduction in CO and NH3 emissions was observed with the use of alcohol-PBDF fuel blends. It was noted that engine speed was more effective than both alcohol-PBDF blends and injection timing on the formation of CO2 emissions. It was observed that delaying the fuel injection time is more effective on NOx emissions than the use of ethanol-PBDF mixture. Moreover, it was observed that increasing ethanol ratio in fuel blend led to increase in in-cylinder gas pressure due to longer ignition delay that enables more time to fuel and air to mixture. The longest ignition delay was calculated as 9.2 degrees CA in use of E15B3 fuel at 1400 rpm.