Person: ÇAM, MUHAMMET EMİN
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ÇAM
First Name
MUHAMMET EMİN
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access A novel treatment strategy for preterm birth: Intra-vaginal progesterone-loaded fibrous patches(ELSEVIER, 2020-10) YAVUZ, AYŞE NUR; Cam, Muhammet Emin; Hazar-Yavuz, Ayse Nur; Cesur, Sumeyye; Ozkan, Ozan; Alenezi, Hussain; Sasmazel, Hilal Turkoglu; Eroglu, Mehmet Sayip; Brako, Francis; Ahmed, Jubair; Kabasakal, Levent; Ren, Guogang; Gunduz, Oguzhan; Edirisinghe, MohanProgesterone-loaded poly(lactic) acid fibrous polymeric patches were produced using electrospinning and pressurized gyration for infra-vaginal application to prevent preterm birth. The patches were intravaginally inserted into rats in the final week of their pregnancy, equivalent to the third trimester of human pregnancy. Maintenance tocolysis with progesterone-loaded patches was elucidated by recording the contractile response of uterine smooth muscle to noradrenaline in pregnant rats. Both progesterone-loaded patches indicated similar results from release and thermal studies, however, patches obtained by electrospinning had smaller average diameters and more uniform dispersion compared to pressurized gyration. Patches obtained by pressurized gyration had better results in production yield and tensile strength than electrospinning; thereby pressurized gyration is better suited for scaled-up production. The patches did not affect cell attachment, viability, and proliferation on Vero cells negatively. Consequently, progesterone-loaded patches are a novel and successful treatment strategy for preventing preterm birth.Publication Metadata only Fabrication, characterization and fibroblast proliferative activity of electrospun Achillea lycaonica-loaded nanofibrous mats(PERGAMON-ELSEVIER SCIENCE LTD, 2019) KABASAKAL, LEVENT; Cam, Muhammet Emin; Cesur, Sumeyye; Taskin, Turgut; Erdemir, Gokce; Kuruca, Durdane Serap; Sahin, Yesim Muge; Kabasakal, Levent; Gunduz, OguzhanThe use of natural compounds such as biocompatible and non-toxic plant extracts, without undesired side effects, in tissue engineering applications, is highly preferred compared to chemical drugs. In this study, the characterization and performance of electrospun Achillea lycaonica-loaded (0.125, 0.250 and 0.500, wt%) poly (lactic acid) (PLA) (8%, w/v) nanofibrous mats for skin tissue engineering were investigated. SEM, FTIR, DSC, and tensile strength test of the electrospun nanofibers have been investigated. Drug releasing test and cell culture study were also carried out. Achillea lycaonica-loaded nanofibrous mats in 0.250 (wt%) and 0.500 (wt%) demonstrated excellent cell compatibility and increased the viability of NIH/3T3 (mouse embryo fibroblast) cells within 72 h. According to the results, Achillea lycaonica-loaded PLA nanofibers have proper tensile strength and controlled release. The working temperature range enlarged for the composites having higher plant extract content. Consequently, Achillea lycaonica-loaded nanofibrous mats have a great potential in skin tissue engineering applications.Publication Open Access Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study(ELSEVIER, 2021-02) YAVUZ, AYŞE NUR; Cam, Muhammet Emin; Ertas, Busra; Alenezi, Hussain; Hazar-Yavuz, Ayse Nur; Cesur, Sumeyye; Ozcan, Gul Sinemcan; Ekentok, Ceyda; Guler, Ece; Katsakouli, Christina; Demirbas, Zehra; Akakin, Dilek; Eroglu, Mehmet Sayip; Kabasakal, Levent; Gunduz, Oguzhan; Edirisinghe, MohanThe combination of oral antidiabetic drugs, pioglitazone, metformin, and glibenclamide, which also exhibit the strongest anti-inflammatory action among oral antidiabetic drugs, were loaded into chitosan/gelatin/polycaprolactone (PCL) by electrospinning and polyvinyl pyrrolidone (PVP)/PCL composite nanofibrous scaffolds by pressurized gyration to compare the diabetic wound healing effect. The combination therapies significantly accelerated diabetic wound healing in type-1 diabetic rats and organized densely packed collagen fibers in the dermis, it also showed better regeneration of the dermis and epidermis than single drug-loaded scaffolds with less inflammatory cell infiltration and edema. The formation of the hair follicles started in 14 days only in the combination therapy and lower proinflammatory cytokine levels were observed compared to single drug-loaded treatment groups. The combination therapy increased the wettability and hydrophilicity of scaffolds, demonstrated sustained drug release over 14 days, has high tensile strength and suitable cytocompatibility on L929 (mouse fibroblast) cell and created a suitable area for the proliferation of fibroblast cells. Consequently, the application of metformin and pioglitazone-loaded chitosan/gelatin/PCL nanofibrous scaffolds to a diabetic wound area offer high bioavailability, fewer systemic side effects, and reduced frequency of dosage and amount of drug.