Person: YILMAZ, İLKER TURGUT
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
YILMAZ
First Name
İLKER TURGUT
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Metadata only Investigation of combustion and emission characteristics in a TBC diesel engine fuelled with CH4-CO2-H-2 mixtures(PERGAMON-ELSEVIER SCIENCE LTD, 2021) YILMAZ, İLKER TURGUT; Sanli, Ali; Yilmaz, Ilker Turgut; Gumus, MetinIn this study, an experimental investigation was performed to reveal combustion and emission characteristics of common-rail four-cylinder diesel engine run with CH4, CO2 and H-2 mixtures. The engine pistons were thermally coated with zirconia and Ni-Al bond coat by plasma spray method. With a small amount of the pilot diesel, port fuelled methane (100% CH4), synthetic biogas (80% CH4 + 20% CO2), and hydrogen presented (80% CH4+10% CO2+10% H-2) mixtures were used as main fuel at different loads (50 Nm, 75 Nm, and 100 Nm) at a constant speed of 1750 min(-1). Comparative analysis of the combustion (cylinder pressure, PRR, HRR, CHR, ringing intensity, CA10, CA50, and CA90), BSFC, and emissions (CO2, HC, NOx, smoke, and oxygen) at the various engine loads with and without piston coating was made for all fuel combinations. It was found that coating the engine pistons enhanced the examining combustion characteristics, whereas it slightly changed BSFC and most of the emissions. As compared to the sole diesel fuel, the gaseous fuel operations showed higher in-cylinder pressure, PRR, and ringing intensity values, earlier combustion starting and CAs, and lower diesel injection pressure at the same engine operating conditions. Dramatic increase in the ringing intensity was particularly found by the hydrogen introduced mixture under the tests with coated piston. HC and CO2 emissions increased in operation with the synthetic biogas; however, hydrogen introduction reduced HC emissions by 4.97-30.92%, and CO2 emissions by 5.16-10%. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Publication Metadata only Experimental Evaluation of Performance and Combustion Characteristics in a Hydrogen-Methane Port Fueled Diesel Engine at Different Compression Ratios(AMER CHEMICAL SOC, 2020) YILMAZ, İLKER TURGUT; Sanli, Ali; Yilmaz, Ilker Turgut; Gumus, MetinThis paper investigates the performance and combustion characteristics of a common-rail diesel engine fueled with methane and hydrogen enrichment of methane under different loads (2.15, 4.3, 6.45, and 8.6 bar) and compression ratios (CRs) (18.25, 16.9, and 15.8). Traditional diesel fuel is used as the pilot fuel and is injected twice as pre- and main injections. Results of the usage of gaseous fuels are compared with each other and the single diesel mode. Accordingly, brake thermal efficiency (BTE) and brake specific energy consumption (BSEC) are highly deteriorated at low loads, but they improve with load. Hydrogen substitution results in slightly higher BTE and lower BSEC. The average exhaust temperature with gaseous fuels is enhanced compared to that with diesel. Peak cylinder pressures of dual-fuel operations are higher, and an earlier heat release is observed; moreover, combustion noise of dual-fuel operations is further enhanced under a high CR-high load condition. Finally, combustion durations substantially change with loads and CRs.