Person:
YILMAZ, İLKER TURGUT

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

YILMAZ

First Name

İLKER TURGUT

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Sıkıştırma ile Ateşlemeli Motorlarda Bilgisayar Destekli Enerji ve Ekserji Analizi
    (2019-09-30) YILMAZ, İLKER TURGUT; İLKER TURGUT YILMAZ
    Kaynakları daha verimli kullanmanın en iyi yolu, enerji ve ekserji arasındaki ilişkiyi anlamaktır. Termodinamiğin birinci kanunu enerji analiziile ilişkilidir. Bu kanun enerjinin niceliği ile alakalıdır. Enerji analizi sistemin enerji ve entalpi transferlerini açıklamaya yardımcı olur.Enerji yok edilemezken ekserji yok edilebilir. Ekserji bir sistemden elde edilebilecek maksimum teorik iş olarak tanımlanır. Diğer taraftanekserji analizi termodinamiğin ikinci yasasına dayanır. Termodinamiğin ikinci kanunu enerjinin niteliği ile alakalıdır. Bir sistemin kullanılabilirliğiekserji analizi ile belirlenebilir. Bir sistemin termodinamik detaylarının belirlenmesi istenildiğinde hem enerji, hem de ekserjianalizi yapılmalıdır.Ekserji ve enerji analizleri çeşitli alanlara uygulanabilir. Ekserji analizi, içten yanmalı motorlar konusunda önemli bir rol oynamaktadır.Bu çalışmada enerji ve ekserji analizi yapabilen bir programın tanıtımı ve yapısı gösterilmiştir. Program sayesinde hızlı ve güvenilir sonuçlarelde edilebilecektir.
  • Publication
    Effects of hydrogen enrichment on combustion characteristics of a CI engine
    (PERGAMON-ELSEVIER SCIENCE LTD, 2017) DEMİR, ABDULLAH; Yilmaz, I. T.; Demir, A.; Gumus, M.
    In this study a comprehensive investigation of combustion (cylinder pressure, rate of pressure rise, ignition delay) and heat release (rate of heat release, cumulative heat release and center of heat release) parameters of a four cylinder, turbocharged, common rail compression ignition engine running with hydrogen addition was carried out. Hydrogen was send into intake manifold by using a mixing chamber. Flow rates of hydrogen were 20 lpm and 40 lpm for achieving constant speed of 1750 rpm at 50 Nm, 75 Nm and 100 Nm engine loads (EL). Results showed that maximum cylinder pressures (CPs), rate of pressure rises (ROPRs) and ignition delays (IDs) raised, rate of heat releases (ROHRs) decreased and combustion durations (CDs) extended with hydrogen addition. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • PublicationOpen Access
    A research on biogas-diesel dual fuel diesel engine
    (GAZI UNIV, FAC ENGINEERING ARCHITECTURE, 2017-09-07) YILMAZ, İLKER TURGUT; Yilmaz, Ilker Turgut; Gumus, Metin
    In the present study, cylinder pressures, brake specific fuel consumptions and exhaust emissions of a dual fuel diesel engine used biogas (% 60 CH4-% 40 CO2) as main fuel was examined experimentally. Experiments were conducted at 1750 rpm under 50 Nm, 75 Nm and 100 Nm loads. Results showed that biogas could be used in diesel engines for reducing soot emissions. HC emissions and maximum cylinder pressures increased for all engine loads with using biogas in diesel engine. NOx emission decreased at low engine load but increased depending on the rise of engine load. The modifications such as adjusting injection timing, decreasing compression ratio and using different lubrication oils can be used for not only increasing performance but also lowering exhaust emissions of a biogas-diesel dual fuel engine.
  • Publication
    Investigation of the effect of biogas on combustion and emissions of TBC diesel engine
    (ELSEVIER SCI LTD, 2017) YILMAZ, İLKER TURGUT; Yilmaz, I. T.; Gumus, M.
    In this study, the effect of biogas on the thermal barrier coated (TBC) dual-fuel engine was experimentally investigated. Experiments were carried out on a four cylinder, water cooled, turbocharged, common-rail coated and uncoated diesel engine under dual-fuel (biogas-diesel) mode and single fuel (neat diesel) mode. Combustion chambers of the pistons were coated with 400 mu m thickness 8% yttria stabilized zirconia main coat over a 100 mu m thickness Ni-Al bond coat using atmospheric plasma spray method. Combustion (cylinder gas pressure, rate of pressure rise), heat release (rate of heat release, cumulative heat release, duration and center of heat release) exhaust emission (HC, NOx and smoke emissions) parameters were investigated. Results showed that homogenous mixture of gaseous fuel and air caused high cylinder pressures. TBC can be used for decreasing smoke emissions under dual-fuel (biogas-diesel) mode. TBC had not a significant effect on NOx emission of single fuel mode. (C) 2016 Elsevier Ltd. All rights reserved.
  • Publication
    Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine
    (PERGAMON-ELSEVIER SCIENCE LTD, 2018) YILMAZ, İLKER TURGUT; Yilmaz, I. T.; Gumus, M.
    This paper reports an investigation of the engine performance and emissions of an engine burning hydrogen-enriched diesel fuel. Hydrogen was chosen as the secondary fuel for its renewability in the long term and overall sustainability as a fuel. A four-cylinder, four-stroke, 1.461-L diesel engine with a common rail injection system was used for our tests. The cylinder pressures, rate of heat releases (ROHRs), brake specific energy consumptions (BSECs), brake thermal efficiencies (BiEs), exhaust gas temperatures (EGTs), and exhaust emissions were investigated under 50 Nm, 75 Nm and 100 Nm engine loads at 1750 rpm. Diesel fuel was injected directly to combustion chamber while hydrogen was continuously inducted into the intake manifold at two different flow rates while the original settings of the engine's electronic control unit were preserved. Results showed that hydrogen enrichment decreased HC and CO2 emissions and ROHRs, and increased EGTs and cylinder pressures under all conditions we tested. NOx emissions decreased with a 20 lpm flow rate and increased with a 40 lpm flow rate. Hydrogen also had a positive effect on BSEC and BTE, especially with low engine loads. Overall, hydrogen enrichment increases efficiency and reduces carbon-based emissions, all without major engine modifications. (C) 2017 Published by Elsevier Ltd.