Person: EKİCİ, BÜLENT
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
EKİCİ
First Name
BÜLENT
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Effect of air pressure on nanofiber production in solution blowing method(GAZI UNIV, FAC ENGINEERING ARCHITECTURE, 2020-07-21) EKİCİ, BÜLENT; Polat, Yusuf; Yangaz, Murat Umut; Calisir, Mehmet Durmus; Gul, Mehmet Zafer; Demir, Ali; Ekici, Bulent; Kilic, AliIn this study, effect of air pressure on nanofiber diameter and morphology was studied for solution blowing technique. A computational fluid dynamics (CFD) analysis was realized via ANSYS (R) Fluent software, and the results were compared with experimental solutions. The results showed that an increase in air inlet pressure from 100 kPa to 300 kPa has significant effect on nanofiber diameter and morphology. In contrast, as the air inlet pressure increases above 300 kPa to 600 kPa, both nanofiber diameter increases, and the fiber agglomerations are observed due to high turbulence intensity. The droplets were observed at 100 kPa air inlet pressure due to low driving force applied to the polymer solution. The effects of air pressure on nanofiber diameter and morphology have been investigated by using finite volume method, and the results are compared with the experimental results.Publication Open Access Mechanical performance of carbon - aramid fiber-reinforced laminated composites under impact and shear loading(2021-11-01) EKİCİ, BÜLENT; ATMACA B. N., ORUÇ R., AŞÇI G., YİĞİT K., YÜZER S., POLAT Y., EKİCİ B.In this study, the drop weight impact response and the interlaminar shear strength of hybrid carbon/aramid fiber-reinforced laminated composites with different stacking sequences were investigated. Seven different laminates including two types of sandwich-like interply hybrid, three types of interply hybrid, and two types of non-hybrid named carbon and aramid were produced using the vacuum-assisted resin transfer molding method. Drop weight impact and short-beam shear tests were applied to the laminates to calculate the low-velocity impact response and the interlaminar shear strength, respectively. It is observed that while the outer layer of the hybrid structure is carbon, the structure can carry less load but absorb more energy. Pure carbon and pure aramid composites cannot carry loads but can absorb energy as much as their hybrid versions can. Sandwich-like interply hybrid with central carbon showed the best results when load and energy values were compared. Also, sandwich-like interply hybrid with central carbon has higher ILSS among hybrid structures because its center region consists of carbon layers.