Person:
AKAKIN, DİLEK

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Organizational Unit

Job Title

Last Name

AKAKIN

First Name

DİLEK

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Neuroprotective Effect of Plasminogen Activator Inhibitor-1 Antagonist in the Rat Model of Mild Traumatic Brain Injury
    (SPRINGER/PLENUM PUBLISHERS, 2021) ERZİK, CAN; Kuru Bektasoglu, Pinar; Koyuncuoglu, Turkan; Akbulut, Selin; Akakin, Dilek; Eyuboglu, Irem Peker; Erzik, Can; Yuksel, Meral; Kurtel, Hizir
    Plasminogen activator inhibitor-1 (PAI-1) antagonists are known for their neuroprotective effects. In this study, it was aimed to investigate the possible protective effects of PAI-1 antagonists in a rat mild traumatic brain injury (TBI) model. Sprague-Dawley male rats were grouped as sham (n = 7), TBI (n = 9), and TBI + PAI-1 antagonist (5 and 10 mg/kg TM5441 and TM5484; n = 6-7). Under anesthesia, TBI was induced by dropping a metal 300-g weight from a height of 1 m on the skull. Before and 24-h after trauma neurological examination, tail suspension, Y-maze, and novel object recognition tests were performed. Twenty-four hours after TBI, the rats were decapitated and activities of myeloperoxidase, nitric oxide release, luminol-, and lucigenin-enhanced chemiluminescence were measured. Also, interleukin-1 beta, interleukin-6, tumor necrosis factor, interleukin-10, tumor growth factor-beta, caspase-3, cleaved caspase-3, and PAI levels were measured with the ELISA method in the brain tissue. Brain injury was graded histopathologically following hematoxylin-eosin staining. Western blot and immunohistochemical investigation for low-density lipoprotein receptor, matrix metalloproteinase-3, and nuclear factor-kappa B were also performed. Data were analyzed using GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, USA) and expressed as means +/- SEM. Values of p < 0.05 were considered to be statistically significant. Higher levels of myeloperoxidase activity in the TBI group (p < 0.05) were found to be suppressed in 5 and 10 mg/kg TM5441 treatment groups (p < 0.05-p < 0.01). The tail suspension test score was increased in the TBI group (p < 0.001) and decreased in all treatment groups (p < 0.05-0.001). The histologic damage score was increased statistically significantly in the cortex, dentate gyrus, and CA3 regions in the TBI group (p < 0.01-0.001), decreased in the treatment groups in the cortex and dentate gyrus (p < 0.05-0.001). PAI antagonists, especially TM5441, have antioxidant and anti-inflammatory properties against mild TBI in the acute period. Behavioral test results were also improved after PAI antagonist treatment after mild TBI.
  • Publication
    Phoenixin 14 ameloriates pancreatic injury in streptozotocin-induced diabetic rats by alleviating oxidative burden
    (2022-09-01) ÖZDEMİR KUMRAL, ZARİFE NİGAR; YÜKSEL, MERAL; AKAKIN, DİLEK; ERZİK, CAN; HAKLAR, GONCAGÜL; ÖZDEMİR KUMRAL Z. N. , Sen E., Yapici H. B. , Atakul N., Domruk O. F. , Aldag Y., Sen L. S. , Mustafaoglu F. K. , YÜKSEL M., AKAKIN D., et al.
    Phoenixin-14 (PNX) is a neuropeptide that has been shown to prevent oxidative damage and stimulates insulin secretion. We investigated the effects of PNX on pancreatic injury induced by streptozotocin (STZ), and nicotinamide (NAD). Male Sprague-Dawley rats, in control (C) and diabetic (STZ) groups, were treated with either saline, or PNX (0.45 nmol/kg, or 45 nmol/kg) daily for 3 days 1 week after STZ injection. Fasting blood glucose (FBG) and gastric emptying rate (GER) were measured. Tissue and blood samples were collected. PNX treatments prevented pancreatic damage and beta cell loss. Increased luminol and lucigenin levels in the pancreas, ileum and liver tissues of STZ groups were alleviated by PNX treatment in pancreatic and ileal tissues. PNX0.45 decreased FBG without any change in insulin blood level and pancreatic mRNA. GER increased in all diabetic rats while PNX0.45 delayed GER only in the C group. PNX diminishes pancreatic damage and lowers FBG by reducing oxidative load.