Publication:
Evaluation of antisense oligonucleotide loaded chitosan nanoparticles; characterization and antisense effect

No Thumbnail Available

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

GOVI-VERLAG PHARMAZEUTISCHER VERLAG GMBH

Research Projects

Organizational Units

Journal Issue

Abstract

The objective of this study was to investigate the effect of different formulation parameters [i.e. molecular weight and concentration of chitosan, concentration of tripolyphosphate (TPP) and use of alginate] on physico chemical and antisense properties of antisense oligonucleotide (AsODN) loaded chitosan nanoparticles (NPs). Preparation methods of phosphodiester (PO) and phosphorothioate (PS) AsODNs-NPs were also compared. AsODNI was designed to target the beta-galactosidase (beta-gal) gene. HeLa cells were used for in vitro transfection studies and beta-gal was assayed spectrophotometrically. AsODN-NPs obtained were in general positively charged with size between 221.4-525.7 nm depending on formulation. Encapsulation efficiency of NPs depended on the type of backbone of the AsODN. PO-AsODN encapsulation into NPs (78-94%) was less efficient than PS encapsulation (91-98%). The pH of the chitosan solution affected AsODN entrapment. PO-NPs exhibited faster AsODN release than NPs containing PS. In general higher beta-gal inhibition was obtained after transfection of AsODN-NPs in cell culture studies. PS-NPs exhibited a higher inhibition effect and the highest (90.71%) inhibition was obtained with formulation PT-2. PS-adsorbed NPs showed an 88% reduction in beta-gal. This study can form the basis for forthcoming in vivo studies related to AsODN carrier systems that will use chitosan.

Description

Keywords

POLYALKYLCYANOACRYLATE NANOPARTICLES, GENE DELIVERY, FORMULATION, SYSTEM, INHIBITION, CARRIERS, DNA

Citation

Collections