Publication:
Efficient Deployment of Wireless Sensor Nodes with Evolutionary Approaches

No Thumbnail Available

Date

2022-01-01

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Journal Issue

Abstract

© 2022 IEEE.In previous WSN studies, it was observed that there are two common methods used in coverage area calculation: 1) image processing technique or 2) mathematical formulas. calculation of the coverage area, if the sensing ranges of the mobile nodes intersect (overlap) each other, the processing time increases while the calculation result is wrong. In this study, a new method is proposed to calculate the coverage area with relatively high accuracy, including the overlap conditions, but in a shorter time. In this method, the points that were placed as targets to be tracked in the Region of Interest (ROI) in the previous studies are now used in a different way. All covered points by any node are counted to calculate the area. However, in this case, the number of points placed in the area should be much higher than in the previous cases. Coverage performance is calculated by counting the points covered by the WSN nodes and dividing them by the total number of points defined initially. (Coverage rate) First of all, to decide the experiment\"s initial conditions, 57 different cases were simulated. Different number of sensor nodes with different radii (25, 50, 100, 200) was considered and then the average of the error rate of all cases was calculated. The lowest error value was obtained in the case of the 2000×2000 area. Therefore, an area of 2000×2000 was preferred in the next steps. It can be concluded that, this method is a promising method to calculate the coverage rate in WSNs.

Description

Keywords

Bilgi Sistemleri, Haberleşme ve Kontrol Mühendisliği, Kontrol ve Sistem Mühendisliği, Sinyal İşleme, Bilgisayar Bilimleri, Algoritmalar, Yaşam Bilimleri, Temel Bilimler, Mühendislik ve Teknoloji, Information Systems, Communication and Control Engineering, Control and System Engineering, Signal Processing, Computer Sciences, algorithms, Life Sciences, Natural Sciences, Engineering and Technology, Mühendislik, Bilişim ve Teknoloji (ENG), Yaşam Bilimleri (LIFE), Bilgisayar Bilimi, Mühendislik, Sinirbilim ve Davranış, OTOMASYON & KONTROL SİSTEMLERİ, BİLGİSAYAR BİLİMİ, YAPAY ZEKA, MÜHENDİSLİK, ELEKTRİK VE ELEKTRONİK, Engineering, Computing & Technology (ENG), Life Sciences (LIFE), COMPUTER SCIENCE, ENGINEERING, NEUROSCIENCE & BEHAVIOR, AUTOMATION & CONTROL SYSTEMS, COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE, ENGINEERING, ELECTRICAL & ELECTRONIC, Yapay Zeka, Fizik Bilimleri, Bilgisayar Bilimi Uygulamaları, Bilgisayarla Görme ve Örüntü Tanıma, Kontrol ve Optimizasyon, İnsan Bilgisayar Etkileşimi, Artificial Intelligence, Physical Sciences, Computer Science Applications, Computer Vision and Pattern Recognition, Control and Optimization, Human-Computer Interaction, coverage, evolutionary algorithm, genetic algorithm, sensor deployment, Wireless Sensor Network

Citation

Birtane Akar S., KORKMAZ H., Sahingoz O. K. , \"Efficient Deployment of Wireless Sensor Nodes with Evolutionary Approaches\", 4th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, HORA 2022, Ankara, Türkiye, 9 - 11 Haziran 2022

Collections