Publication:
Production and characterization of elastomeric cardiac tissue-like patches for Myocardial Tissue Engineering

dc.contributor.authorEKREN, NAZMİ
dc.contributor.authorsCesur, Sumeyye; Ulag, Songul; Ozak, Lara; Gumussoy, Aleyna; Arslan, Sema; Yilmaz, Betul Karademir; Ekren, Nazmi; Agirbasli, Mehmet; Kalaskar, Deepak M.; Gunduz, Oguzhan
dc.date.accessioned2022-03-14T09:22:06Z
dc.date.available2022-03-14T09:22:06Z
dc.date.issued2020-10
dc.description.abstractCardiovascular disease remains the leading cause of death. Damaged heart muscle is the etiology of heart failure. Heart failure is the most frequent cause of hospital and emergency room admissions. As a differentiated organ, current therapeutics and techniques can not repair or replace the damaged myocardial tissue. Myocardial tissue engineering is one of the promising treatment modalities for repairing damaged heart tissue in patients with heart failure. In this work, random Polylactic acid (PLA), Polylactic acid/Polyethylene glycol (PLA/PEG) and random and aligned Polylactic acid/Polyethylene glycol/Collagen (PLA/PEG/COL) nanofiber patches were successfully produced by the electrospinning technique. In vitro cytotoxic test (MTT), morphological (SEM), molecular interactions between the components (FT-IR), thermal analysis (DSC), tensile strength and physical analysis were carried out after production. The resulting nanofiber patches exhibited beadless and smooth structures. When the fiber diameters were examined, it was observed that the collagen doped random nanofiber patches had the lowest fiber diameter value (755 nm). Mechanical characterization results showed that aligned nanofiber patches had maximum tensile strength (5.90 MPa) values compared to PLA, PLA/PEG, and PLA/PEG/COL (random). In vitro degradation test reported that aligned patch had the highest degradation ratio. The produced patches displayed good alignment with tissue on cardiomyocyte cell morphology studies. In conclusion, newly produced patches have noticeable potential as a tissue-like cardiac patch for regeneration efforts after myocardial infarction.
dc.identifier.doi10.1016/j.polymertesting.2020.106613
dc.identifier.eissn1873-2348
dc.identifier.issn0142-9418
dc.identifier.urihttps://hdl.handle.net/11424/243032
dc.identifier.wosWOS:000567859800008
dc.language.isoeng
dc.publisherELSEVIER SCI LTD
dc.relation.ispartofPOLYMER TESTING
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCollagen
dc.subjectElectrospinning
dc.subjectMyocardial tissue engineering
dc.subjectPolylactic acid
dc.subjectPolyethylene glycol
dc.subjectPEG
dc.subjectNANOFIBERS
dc.subjectFIBERS
dc.subjectDEGRADATION
dc.subjectFABRICATION
dc.subjectBEHAVIOR
dc.subjectSCAFFOLD
dc.titleProduction and characterization of elastomeric cardiac tissue-like patches for Myocardial Tissue Engineering
dc.typearticle
dspace.entity.typePublication
local.avesis.id7f60fa90-3914-4dde-b406-f13b6a8c66e0
local.import.packageSS16
local.indexed.atWOS
local.indexed.atSCOPUS
local.journal.articlenumber106613
local.journal.numberofpages11
local.journal.quartileQ1
oaire.citation.titlePOLYMER TESTING
oaire.citation.volume90
relation.isAuthorOfPublicationbf8fa87c-9f12-4134-a6e3-274f1ec50ed9
relation.isAuthorOfPublication.latestForDiscoverybf8fa87c-9f12-4134-a6e3-274f1ec50ed9

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cesur et al. - 2020 - Production and characterization of elastomeric car.pdf
Size:
4.12 MB
Format:
Adobe Portable Document Format

Collections