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Abstract: Plastoquinone analogs are privileged structures among the known antiproliferative natural
product-based compound families. Exploiting one of these analogs as a lead structure, we report the
investigation of the brominated PQ analogs (BrPQ) in collaboration with the National Cancer Institute
of Bethesda within the Developmental Therapeutics Program (DTP). These analogs exhibited growth
inhibition in the micromolar range across leukemia, non-small cell lung cancer (EKVX, HOP-92, and
NCI-H522), colon cancer (HCT-116, HOP-92), melanoma (LOX IMVI), and ovarian cancer (OVCAR-4)
cell lines. One brominated PQ analog (BrPQ5) was selected for a full panel five-dose in vitro assay
by the NCI’s Development Therapeutic Program (DTP) division to determine GI50, TGI, and LC50

parameters. The brominated PQ analog (BrPQ5) displayed remarkable activity against most tested
cell lines, with GI50 values ranging from 1.55 to 4.41 µM. The designed molecules (BrPQ analogs)
obeyed drug-likeness rules, displayed a favorable predictive Absorption, Distribution, Metabolism,
and Excretion (ADME) profile, and an in silico simulation predicted a possible BrPQ5 interaction with
proteasome catalytic subunits. Furthermore, the in vitro cytotoxic activity of BrPQ5 was assessed,
and IC50 values for U-251 glioma, MCF-7 and MDA-MB-231 breast cancers, DU145 prostate cancer,
HCT-116 colon cancer, and VHF93 fibroblast cell lines were evaluated using an MTT assay. MCF-7
was the most affected cell line, and the effects of BrPQ5 on cell proliferation, cell cycle, oxidative
stress, apoptosis/necrosis induction, and proteasome activity were further investigated in MCF-7
cells. The in vitro assay results showed that BrPQ5 caused cytotoxicity in MCF-7 breast cancer cells
via cell cycle arrest and oxidative stress induction. However, BrPQ5 did not inhibit the catalytic
activity of the proteasome. These results provide valuable insights for further discovery of novel
antiproliferative agents.

Keywords: quinone; plastoquinones; antiproliferative activity; cytotoxicity; cell cycle; oxidative
stress; ADME
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1. Introduction

Breast cancer is a malignant tumor affecting areas in or around the breast tissue [1].
There are different types of breast cancer, depending on which cells in the breast become
cancerous. Lobules, ducts, and connective tissue are three key parts of the breast [2].
Breast cancer affects the ducts of the glandular tissue of the breast in 85% of the cases or
the lining cells of the lobules in 15% of the cases [3]. Cancerous growth initially occurs
only in the duct or lobule, usually without causing any symptoms, and the potential to
spread (metastasize) is minimal. Metastasis is responsible for the fatal outcomes associated
with breast cancer [3]. The statistical data published by the International Agency for
Research on Cancer (IARC) in December 2020 suggests that approximately 2.3 million
women were diagnosed with breast cancer in 2020, and breast cancer caused approximately
685,000 deaths. Before World Cancer Day 2021, the WHO experts announced that the
global cancer landscape had changed significantly and declared that breast cancer had
surpassed lung cancer as the most frequently diagnosed type of cancer worldwide. Vowing
to fight the disease, the WHO created a new global breast cancer initiative and has been
holding necessary consultations [4]. The key treatments for breast cancer include surgery,
chemotherapy, radiotherapy, hormonal therapy, bone-strengthening drugs, and molecular-
targeted anticancer drugs [5,6]. Despite the availability of many anticancer drugs to treat
breast cancer, the pursuit of developing novel anticancer drugs remains the primary focus
of pharmaceutical companies and scientists, considering the demand for less toxic, safe,
and effective drugs [7,8]. With the recent trend of synthesizing new compounds, often
based on biologically active small molecules, organic synthesis aims to bridge the gap
between cancer and new drugs that treat this disease.

Aminoquinones continue to attract significant attention as drug candidates because
of their broad biological activity profiles and easy accessibility [9–11]. Many studies have
been conducted on the biological activities of quinones, particularly focusing on the anti-
cancer and antimicrobial properties of aminoquinones [12–19]. Recent developments in
our group have contributed significantly to searching and identifying the lead molecules
based on natural products, mainly focusing on the antiproliferative [20–22] and antimi-
crobial profiles [23,24] of quinones. The common characteristic within the lead structures
is the presence of a primary (aryl) or secondary amine and 1,4-quinone moieties. The
potential complementarity and diversity of these moieties offer a significant scope for
synthesizing new molecules. Our previous studies have indicated that the halogenated
plastoquinone (PQ) analogs (brominated or chlorinated) are more active than the nonhalo-
genated PQ analogs [23,25,26]. The chlorinated PQ analogs exhibited maximum sensitivity
toward many cancer cell lines, particularly leukemia cell lines, than the nonhalogenated PQ
analogs [27]. Assessing the anticancer profiles of previously obtained PQ analogs revealed
that the different substitutent(s) at different positions in the arylamino moiety and chlorine
atom in the quinone moiety were essential for the analogs’ activity, and their absence led
to the loss of activity in most cases. Therefore, the arylamino moiety and bromine atom
(instead of chlorine atom) were preserved in these analogs. Our design aimed at two
different structural modifications on the PQ analogs. Based on these encouraging results,
our research group focused on investigating the BrPQ analogs for their antiproliferative
activity against versatile cancer cell lines. In search of new antiproliferative agents, and in
continuation of our research focus on discovering new anti-infective small molecules [28],
we investigated the antiproliferative profile of the BrPQ analogs with a variety of sub-
stituents in different positions on the aminophenyl moiety. In line with these observations,
the present study focused on the anticancer effects of a selected molecule, BrPQ5. The
cytotoxic activity of BrPQ5 was evaluated against U-251 glioma, MCF-7 and MDA-MB-231
breast cancers, DU145 prostate cancer, and HCT-116 colon cancer cell lines. Furthermore,
the IC50 values were calculated. These results were compared with VHF93 fibroblast cells to
determine cancer selectivity. To better elucidate the mechanisms underlying the cytotoxic
activity of BrPQ5 against the most sensitive cell line, MCF-7, the cell proliferation was
evaluated through its colony-forming ability. Moreover, we investigated the effect of BrPQ5
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on apoptosis induction and cell cycle profile in MCF7 cells. The role of apoptotic/necrotic
cell death and cell cycle changes on the decrease in cell proliferation was investigated.
An excessive accumulation of reactive oxygen species (ROS) in cells can lead to oxidative
stress-induced cellular damage [29]. Thus, the intracellular ROS level was also measured.
Molecular docking studies against proteasome catalytic sites were performed with BrPQ5
as the ligand to study its binding mode, and proteasome activity was measured in MCF7
cells to confirm its inhibitory activity.

2. Results and Discussion
2.1. Design Strategy

Drugs such as mitomycin C, mitoxantrone, and doxorubicin and some of the biolog-
ically active synthetic molecules contain 1,4-quinone moiety. Our strategy was inspired
by a natural 2,3-dimethyl-1,4-benzoquinone structure with a side chain of nine isoprenyl
groups named PQ-A or PQ-9 [30], as well as those containing shorter side chains such
as PQ-3, having three isoprenyl side units as shown in Figure 1 [31]. In the past three
years, we have published the syntheses and extensive exploration of a broad range of
various PQ analogs to elucidate their antiproliferative and/or antibiotic profiles using 2,3-
di-methylhydroquinone as a precursor [21,23,26,28,32,33]. Figure 1 illustrates the design
concept of BrPQ analogs. Based on our previous studies, we have combined different active
parts of plastoquinone analogs into a single target molecule. The studied PQ analogs within
this study were published as antimicrobial agents by a repositioning strategy previously by
our group [25,28].
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2.2. Biological Activities
2.2.1. Preliminary Screening of the In Vitro Antiproliferative Activity

A preliminary antiproliferative in vitro assay (at a single dose of concentration, 10 µM)
was performed under the Developmental Therapeutics Program (DTP) at the National
Cancer Institute (NCI), Bethesda, to explore the cytotoxic activity of the BrPQ analogs
against a panel of 60 human cancer cell lines, which included nine tumor subpanels,
namely leukemia, lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast cancer
cell lines [34]. Before biological testing, the purity of the BrPQ analogs was analyzed
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using HPLC (Shimadzu/DGU-20A5 HPLC apparatus fitted with a 25 cm Chiralpac AD-
H chiral column) with hexane/2-propanol [95:5] as the mobile phase at a flow rate of
1.0 mL/min. The purity of all analogs was ≥95%. Their chromatograms are provided as
Supplementary Material (Figures S1–S10). The preclinical development program of NCI
plays a vital role in finding and developing the lead molecules for the next stage in drug
discovery worldwide. Out of all the presented analogs, herein, 10 BrPQ analogs, namely
BrPQ1 (NCI: D-825199/1), BrPQ2 (NCI: D-827603/1), BrPQ3 (NCI: D-827604/1), BrPQ4
(NCI: D-827602/1), BrPQ5 (NCI: D-825197/1), BrPQ6 (NCI: D-825198/1), BrPQ7 (NCI:
D-827608/1), BrPQ8 (NCI: D-827605/1), BrPQ9 (NCI: D-827606/1), and BrPQ10 (NCI:
D-827607/1) were tested by the NCI for an in vitro disease-oriented human cell screening
panel assay. The structures of the BrPQ analogs are shown in Figure 2. Among the ten
BrPQ analogs, five BrPQ analogs (BrPQ2, BrPQ5, BrPQ6, BrPQ9, and BrPQ10) exhibited
broad-spectrum potent inhibitory effects on some leukemia cell lines. Furthermore, three
BrPQ analogs (BrPQ6, BrPQ7, and BrPQ9) showed strong antiproliferative activity against
breast cancer cell lines. Additionally, BrPQ5 was selected for a five-dose level screening for
further in vitro evaluation. Details of the antiproliferative activity results at one-dose and
five-dose analyses are provided separately under two subtitles.
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2.2.2. In Vitro Antiproliferative Activity at the One-Dose Assay

The observed one-dose results of each tested BrPQ analog were reported as a function
of the growth percentage (GP) of treated cells. Their one-dose mean graphs and table
are presented in the Supplementary Material as Figures S11–S20 and Table S1. All BrPQ
analogs did not exert an acceptable inhibitory effect on some cancer cell lines, such as CNS
cancer, melanoma (except the LOX IMVI cell line), ovarian cancer (except the OVCAR-4
cell line), renal cancer, and prostate cancer. Among all the BrPQ analogs, the BrPQ analogs
with alkoxy substituent(s) in the amino phenyl moiety displayed maximum sensitivity
toward several cancer cell lines, particularly CCRF-CEM, HL-60(TB), K-562, MOLT-4,
and SR leukemia cell lines, as shown in Table S1. Looking specifically at those analogs
suggests that they also displayed considerable antiproliferative activity against breast
cancer cell lines. Prominent activity was also observed against breast cancer cell lines. Four
BrPQ analogs (BrPQ3, BrPQ4, BrPQ5, and BrPQ7) displayed remarkable antiproliferative
activity against the colon HCT-116 cell line, with a growth inhibition of 64.64, 79.99, 85.93,
and 65.27%, respectively. BrPQ3, BrPQ4, and BrPQ10 showed the best GI% values of 70.14,
93.36, and 79.67%, respectively, in the subpanel cell line of the melanoma cancer panel
(LOX IMVI). Surprisingly, among the brominated PQ analogs, only one analog (BrPQ8)
displayed maximum sensitivity against the ovarian OVCAR-4 cell line with a growth
inhibition percentage of 85.94%. Moreover, two analogs (BrPQ4 and BrPQ7) exhibited
excellent to moderate antiproliferative activity in some subpanel cell lines of the non-small
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cell lung cancer panel (EKVX, HOP-92, and NCI-H522). BrPQ7 was the most potent analog
with above 90% GI% values for the colon cancer line HOP-92. The bromi-nated PQ analogs
showed a significant antiproliferative effect profile against leukemia and breast cancer
models. BrPQ2 displayed maximum sensitivity toward K-562 and CCRF-CEM cancer cell
lines of leukemia with 83.46 and 97.97% of GI%, respectively. It also showed promising
activity against the T-47D (95.53%) breast cancer cell line. Three BrPQ analogs (BrPQ6,
BrPQ9, and BrPQ10) showed a significant growth inhibition against K-562 with 99.57,
96.57, and 95.54%, respectively. The most potent BrPQ analog was the BrPQ5 against the
SR cell line of leukemia with 97.94% of GI%. BrPQ6 exhibited the highest activity against
CCRF-CEM (96.65%, GI%) and MOLT-4 (97.43%, GI%) cell lines of the leukemia panel. On
the other hand, the most endowed BrPQ analog (BrPQ7) displayed potency against the
MDA-MB-468 (98.74%, GI%) breast cancer cell line.

2.2.3. In Vitro Antiproliferative Activity at Five-Dose Assay

The brominated PQ analog (BrPQ5, NCI: D-825197/1) satisfied the pre-determined
threshold inhibition criteria in a minimum number of cell lines and was advanced to the
five-dose antiproliferative screening against the 60 cell panel at five-dose concentrations
and 10-fold dilutions of five different concentrations (ranging from 0.01 µM to 100 µM). The
five-dose mean graphs are presented in the Supplementary Material as Figures S21–S23.
The generated dose–response curves enable the determination of three response parameters,
namely GI50 (concentration at which 50% of growth inhibitory activity, µM), TGI (total
growth inhibition, µM), and LC50 (concentration at which 50% of cancer cells are killed,
µM), presented in Table 1 for each cell line on nine panels of human cancer cell lines [34,35].
The results obtained from the preliminary in vitro antiproliferative activity at five-dose
concentration levels are shown in Table 1. The most sensitive cancer cell lines were all
leukemia cell lines, EKVX, HOP-92, NCI-H23 (non-small cell lung cancer cell lines), HCT-
116, SW-620 (colon cancer cell lines), LOX IMVI, MDA-MB-435, SK-MEL-28, UACC-257
(melanoma cell lines), IGROV1, OVCAR-3, OVCAR-4, OVCAR-8, NCI/ADR-RES (ovarian
cancer cell lines), A498, ACHN, CAKI-1, RXF 393, UO-31 (renal cancer cell lines), PC-3
(prostate cancer cell line), and MCF7, MDA-MB-231/ATCC, T-47D, MDA-MB-468 (breast
cancer cell lines), with GI50 values ranging from 1.55 to 4.41 µM. An excellent potency
was seen for the selected BrPQ analog (BrPQ5) against the breast cancer cell lines MCF7,
MDA-MB-231/ATCC, T-47D, and MDA-MB-468. Additionally, the analog BrPQ5 showed
high activity with GI50 values ranging from 2.21 to 3.21 µM. It also displayed a pronounced
activity against other cancer cell lines from different tumor subpanels. Moreover, this analog
possessed promising TGI values ranging from 3.16 to 4.81 µM against some breast cancer
cell lines. Additionally, significant TGI values ranging from 5.00 to 10.00 µM were noticed
with some cancer cell lines. Concerning the lethality (LC50 values), a few panel cancer cell
lines showed values exceeding 100 µM. Finally, it displayed potent lethal action against
some cancer cell lines (LC50 values from 5.00 to 20.00 µM). All the five-dose–response
curves of the BrPQ analog (BrPQ5) against the panel of 60 human cancer cell lines are
presented in Figure 3.

Table 1. GI50, TGI, and LC50 values (in µM) of antiproliferative activity data as per a five-dose assay
of the BrPQ analog (BrPQ5).

Molecule BrPQ5 (NCI: D-825197/1)

Panel/Cell Line GI50 TGI LC50

Leukemia
CCRF-CEM 2.33 >100 >100
HL-60 (TB) 2.34 6.82 >100
K-562 2.25 >100 >100
MOLT-4 2.67 >100 >100
RPMI-8226 2.21 5.01 >100
SR 3.21 >100 >100
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Table 1. Cont.

Molecule BrPQ5 (NCI: D-825197/1)

Panel/Cell Line GI50 TGI LC50

Non-Small Cell Lung Cancer
A549/ATCC 18.70 45.70 >100
EKVX 1.69 3.12 5.77
HOP-62 15.00 38.60 99.70
HOP-92 1.55 3.08 6.10
NCI-H226 13.00 27.60 58.50
NCI-H23 4.41 23.70 >100
NCI-H322M 14.60 27.80 53.10
NCI-H460 18.80 42.60 96.10
NCI-H522 12.70 31.80 79.50

Colon Cancer
COLO 205 21.30 51.10 >100
HCC-2998 12.40 26.50 56.50
HCT-116 1.76 3.37 6.46
HCT-15 11.40 27.70 67.40
HT29 27.40 79.60 >100
KM12 5.02 19.00 58.00
SW-620 2.07 4.54 9.97

CNS Cancer
SF-268 11.90 28.20 67.00
SF-295 13.80 27.00 52.80
SF-539 13.50 26.70 52.90
SNB-19 10.50 22.80 49.10
SNB-75 11.00 23.50 50.20
U251 19.30 3.98 8.24

Melanoma
LOX IMVI 1.67 3.17 5.99
MALME-3M 14.50 28.30 55.20
M14 11.70 24.80 52.60
MDA-MB-435 1.91 3.49 6.36
SK-MEL-2 11.40 28.30 70.60
SK-MEL-28 2.30 4.76 9.88
SK-MEL-5 13.10 26.00 51.50
UACC-257 1.75 3.37 6.51
UACC-62 7.74 20.70 46.80

Ovarian Cancer
IGROV1 1.80 3.39 6.38
OVCAR-3 1.72 3.13 5.72
OVCAR-4 1.60 2.97 5.49
OVCAR-5 5.07 21.80 75.40
OVCAR-8 2.22 5.31 >100
NCI/ADR-RES 2.04 4.65 >100
SK-OV-3 12.30 26.10 55.00

Renal Cancer
786-0 15.70 29.90 56.90
A498 1.62 33.60 >100
ACHN 2.87 8.76 29.40
CAKI-1 1.72 3.11 5.63
RXF 393 2.71 8.13 32.30
SN12C 11.00 23.20 49.10
TK-10 25.20 40.90 66.30
UO-31 1.73 3.16 5.77
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Table 1. Cont.

Molecule BrPQ5 (NCI: D-825197/1)

Panel/Cell Line GI50 TGI LC50

Prostate Cancer
PC-3 2.78 9.05 33.50
DU-145 15.00 29.10 56.50

Breast Cancer
MCF7 1.78 3.77 7.98
MDA-MB-231/ATCC 1.88 3.96 8.34
HS 578T 11.80 57.50 >100
BT-549 11.80 24.40 50.40
T-47D 1.93 4.81 >100
MDA-MB-468 1.56 3.16 6.40
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2.2.4. in silico Study

High oral bioavailability is a key factor that is essential for introducing biologically
active molecules into the therapeutic market. Oral bioavailability can be predicted by ex-
amining molecular features, i.e., low polar surface area or total hydrogen bonding, reduced
molecular flexibility, and good intestinal absorption [36,37]. All molecular properties (Ab-
sorption, Distribution, Metabolism, and Excretion (ADME) parameters, pharmacokinetic
profile with drug-likeness) and associated descriptive parameters of the BrPQ analogs
(BrPQ5) were predicted using the free web tool SwissADME (http://www.swissadme.ch,
accessed on 3 May 2022) developed by the Swiss Institute of Bioinformatics [38], and are

http://www.swissadme.ch
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reported in the Supplementary Material as Figure S24. The compound was found to have
significantly favorable pharmacokinetic and physicochemical properties, accounting for
its flexibility, lipophilicity, size, polarity, solubility, and unsaturation. The BrPQ analog
(BrPQ5) displayed a good lipophilic character with a consensus Log Po/w value of 2.75
and moderate solubility in water. The pink area in the bioavailability radar chart (in the
Supplementary Material as Figure S24) represents the values most advantageous for oral
bioavailability, i.e., flexibility (FLEX), lipophilicity (LIPO), size (SIZE), polarity (POLAR),
and solubility (INSOLU), except for saturation (INSATU) [38,39]. Lipinski’s rule of five
was used as a filter for drug-like properties by stating good membrane permeability of
molecules with MW ≤ 500 (molecular weight), log P ≤ 5, N or O ≤ 10 (number of H-bond
acceptor, HBA), NH or OH ≤ 5 (number of H-bond donor, HBD), nRot ≤ 10 (number of
rotatable bonds), and TPSA < 140 Å2 (topological polar surface area, TBSA). The BrPQ
analog (BrPQ5) carries all the required properties without violating Lipinski’s rule of five.
As a biologically active molecule containing less than or equal to five hydrogen bond
donors and less than 10 hydrogen bond acceptors, BrPQ5 is likely to have rich absorption
and cellular permeation.

The calculation method for SwissADME is an accurate predictive model (Brain Or
IntestinaL EstimateD permeation, BOILED-Egg) developed for lead optimization by cal-
culating the lipophilicity and polarity of small molecules [40]. The BrPQ analog (BrPQ5)
showed high gastrointestinal (GI) absorption according to the white of the BOILED-Egg,
illustrated in the Supplementary Material as Figure S25. The BrPQ analog (BrPQ5), as
indicated by the BOILED-Egg graph, was predicted to passively permeate through the
blood–brain barrier (BBB) according to the yolk portion of the BOILED-Egg chart. Addi-
tionally, the BrPQ analog (BrPQ5) was unsuitable as a substrate for P-glycoprotein (P-gp)
according to the BOILED-Egg graph. The observed results from an in silico ADME study
indicate the potential pharmacological use of the BrPQ analog (BrPQ5) that would be
a suitable template for further studies to determine the clinical applications in specific
leukemia types.

The analysis of cell cycle and oxidative stress in MCF-7 breast cancer cell lines after
administering BrPQ5 suggested that it blocks the cell cycle at the G0/G1 phase with
the induction of the S phase and an increase in oxidative stress. Proteasome inhibitors
show a few characteristic features. Additionally, BrPQ5 shares structural similarity with
known proteasome inhibitors of natural origin, shikonin and celastrol, as they also have a
quinone pharmacophore (Figure 4). This prompted us to perform a simulation study for
BrPQ5 with human 20S proteasome beta-1 (caspase-like), beta-2 (trypsin-like), and beta-5
(chymotrypsin-like) subunits. The X-ray crystal structure for human 20S proteasome in
complex with the proteasome inhibitor carfilzomib (PDB: 4R67) was used for the simulation.
BrPQ5 was found to interact well with all the three subunits, and the interactions are
discussed below.
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Figure 4. Proteasome inhibitors having a quinone pharmacophore.

Interaction of BrPQ5 with the beta5 subunit (chymotrypsin-like) of the human 20S protea-
some: BrPQ5 appeared to occupy the S1 subpocket that accommodates small hydrophobic
residues such as the Ala, Val, or Tyr of the substrate. BrPQ5 showed three H-bonding
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interactions. The amino hydrogen of BrPQ5 interacted with the side-chain hydroxy oxygen
of Thr21. The quinone oxygen with a side-chain hydroxy hydrogen interacted with the
amino hydrogen of Thr1. The quinone ring of BrPQ5 interacted with Thr1, which is further
stabilized by the π–π interaction of the quinone ring with Tyr169. The phenyl group of
BrPQ5 showed hydrophobic interactions with Gly47, Gly48, Ala49, and Ala50. Figure 5
shows a 2D interaction plot for the beta-5 subunit with BrPQ5.
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Interaction of BrPQ5 with the beta-2 subunit (trypsin-like) of the human 20S proteasome:
The acidic S1 subpocket, meant for accommodating basic P1 amino acids in the substrate,
was found to interact well with BrPQ5. The quinone oxygen of BrPQ5 showed an H-
bonding interaction with the backbone NH of Glu2, while methoxy oxygen displayed an
H-bonding interaction with the backbone NH of Ala22. A π–π interaction was observed. A
hydrophobic interaction was observed with Met1, Val20, Ala21, Val47, Gly48, Glu49, and
Asn101. A 2D interaction plot illustrating the complex of the beta-2 subunit with BrPQ5 is
shown in Figure 6.

Interaction of BrPQ5 with the beta-1 subunit (caspase-like) of the human 20S proteasome:
BrPQ5 occupied the basic S1 subpocket meant for accommodating acidic amino acids. The
quinone oxygen of BrPQ5 formed an H-bonding interaction with the side-chain amide
NH of Asn8, while amino NH formed an H-bonding interaction with the side-chain
carbonyl oxygen of Glu31. Both the quinone ring and phenyl ring of BrPQ5 exhibited a
π–π interaction with Phe2 and His58, respectively. The interaction of the beta-1 subunit
with BrPQ5 is shown as a 2D interaction plot in Figure 7.
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are shown as a red dashed line. Hydrophobic residues are shown as a red color.
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2.2.5. In Vitro Anticancer Activity

To assess the anticancer activity of BrPQ5, U-251 human glioblastoma, MCF-7 and
MDA-MB-231 human breast cancers, DU-145 human prostate cancer, and HCT-116 human
colon cancer cell lines were used. These cell lines were chosen for in vitro studies according
to NCI’s five dose–response analysis protocols. The VHF93 human fibroblast cell line was
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used as a noncancerous cell line to determine the specific anticancer activity of BrPQ5. As
a positive control, doxorubicin HCl (DOXO) was used, containing the 1,4-quinone moiety.
It is widely used to treat several cancer types [41]. According to the MTT cytotoxicity
assay results, within the concentration range used in the study, BrPQ5 showed cytotoxic
activity in all cancer cell lines (Figure 8). The concentration–response curves and the
50% inhibitory concentration (IC50) values were generated using the inhibitor-normalized
response variable slope function in GraphPad Prism 7 software. The lowest activity was
against the U-251 human glioblastoma cell line, and the IC50 value could not be determined.
DOXO had a similar cytotoxic profile with BrPQ5 against the U-251 human glioblastoma
cell line (Table 2). BrPQ5 showed the highest cytotoxic activities against MCF-7 and MDA-
MB-231 human breast cancer cell lines, and the IC50 values were 33.57 µM ± 1.7 and
33.65 µM ± 2.2, respectively (Figure 8B,C and Table 2). The IC50 values of DOXO were
17.52 µM ± 2.6 and 44.66 µM ± 9.8 against MCF-7 and MDA-MB-231 cells, respectively.
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Figure 8. Cytotoxic evaluation of BrPQ5 on U-251 glioma (A), MCF-7 (B), MDA-MB-231 breast
cancers (C), DU145 prostate cancer (D), HCT-116 colon cancer (E), and VHF93 fibroblast (F) cell lines
after 24 h treatment by MTT assay. The values are expressed as the mean ± SD.

Table 2. IC50 values of BrPQ5, on U-251 glioma, MCF-7 and MDA-MB-231 breast cancers, DU145.

Cell Lines
IC50± (µM)

BrPQ5 DOXO

U-251 >100 >100

MCF-7 33.57 ± 1.7 17.52 ± 2.6

MDA-MB-231 33.65 ± 2.2 44.66 ± 9.8

DU-145 83.89 ± 12.8 >100

HCT-116 74.33 ± 11 12.84 ± 4.5

VHF93 >100 >100
IC50 values were calculated with MTT assay after 24 h BrPQ5 treatment. IC50±: The compound concentration
required to inhibit cell viability by 50%. The values are expressed as the mean ± SD. Prostate cancer, HCT-116
colon cancer, and VHF93 fibroblast cell lines.
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BrPQ5 was less potent against DU-145 human prostate cancer and HCT-116 human
colon cancer cells. The IC50 values for BrPQ5 were 83.89 µM ± 12.8 and 74.33 µM ± 11,
while IC50 values for DOXO were >100 µM and 12.84 µM ± 4.5, respectively. Promisingly,
BrPQ5 did not show cytotoxic activity against VHF93 human fibroblast cells, and the IC50
value could not be determined (Figure 8F). These results indicate high specificity of BrPQ5
to cancer cells, similar to DOXO. According to the cytotoxicity assay results, MCF-7 cells
were selected, and three different concentrations were chosen below the IC50 value (5, 10,
25 µM) for further studies.

The clonogenic assay or colony formation assay is a widely used method to study
the capacity of cancer cells growing from a single cell to a colony, and it provides data
regarding the antiproliferative effect of test compounds [42]. The effect of BrPQ5 on
MCF-7 cell proliferation was assessed using a colony formation assay (Figure 9). BrPQ5
significantly inhibited colony formation in a dose-dependent manner, and colony formation
completely stopped at a 25 µM dose.
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expressed as the mean ± SD. (*** p < 0.001, # p < 0.0001 compared to control).

These results suggest strong antiproliferative activity of BrPQ5 against MCF-7 breast
cancer cells. Therefore, we further explored the cell proliferation changes by flow cytometric
cell cycle analysis. The cell cycle analysis results suggested that BrPQ5 treatment caused
a concentration-dependent decrease in the G0/G1 phase, accompanied by concentration-
dependent induction in the S phase (Figure 10). The S phase of the cell cycle represents
the phase in which the cells replicate their DNA. In this case, the inhibition in the cell
proliferation by BrPQ5 in MCF-7 cells has been shown with MTT and colony formation
assays. Thus, the increased cell population in the S phase seems unlikely to be related to
increased DNA replication. Instead, it more likely suggests an accumulation in the S phase
of the cell cycle with BrPQ5 treatment. Additionally, a slight insignificant increase was
observed in the G2/M. DOXO showed similar effects to BrPQ5 on the cell cycle phases, and
a reduction in the G0/G1 cell population with DOXO was suggested by other studies [43].
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An antioxidant defense system within cells maintains a balance between reactive
oxygen species (ROS) production and scavenging. Excessive ROS production triggers se-
veral structural and molecular modifications and causes a cytotoxic effect [44]. Disruption in
the redox homeostasis causes severe damage to cancer cells due to their high metabolic rate.
Therefore, ROS-inducing therapeutic strategies for cancer treatment are gaining significant
attention [45]. For this reason, the effect of BrPQ5 on oxidative stress was investigated in
this study. Intracellular ROS oxidizes H2DCFDA dye to generate a fluorescent product,
and the intensity of the dye can then be detected by flow cytometry [46]. As shown in
Figure 11, BrPQ5 dramatically increased the oxidative stress level in all concentrations. As
two known oxidative stress inducers, H2O2 and a prooxidant anticancer agent DOXO were
used to compare the results. As indicated in Figure 11, the increment in the ROS production
by BrPQ5 was similar to H2O2 and DOXO. This suggests that the generation of oxidative
stress can be an underlying mechanism responsible for the promising cytotoxic activity of
BrPQ5 against MCF-7 cells.

Furthermore, BrPQ5 was investigated for its necrotic and apoptotic effects using flow
cytometry. Unexpectedly, BrPQ5 did not induce apoptosis, while a significant induction
in the necrotic cell percentage was observed only with the highest concentration (25 µM)
tested (Figure 12). In contrast, DOXO caused a significant increase in the apoptosis and
necrosis rates. These results indicate that the apoptotic pathway was not involved in the
cytotoxic activity of BrPQ5.

In summary, 25 µM BrPQ5 was the highest tested concentration, which was lower than
the IC50 value in MCF7 cells. Supportively, as can be seen in cytotoxicity data, 5 and 10 µM
BrPQ5 caused similar cytotoxic activity, while cytotoxicity increased with 25 µM BrPQ5.
Also, these results were similar to the cell cycle and apoptosis/necrosis assay results.
However, BrPQ5 modulated ROS production in a dose-independent manner and caused
significant ROS production at 5 µM, suggesting its ability to induce oxidative stress in
low concentrations. It is known that cancer cells can adapt themselves to low levels of
ROS to continue tumor development, and only a powerful ROS induction can cause cell
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effective cell damage [47]. Thus, it is thought that a powerful ROS burst with 5 µM BrPQ5
treatment may be responsible for the antiproliferative effect in MCF7 cells. The changes in
the cell cycle and cell necrosis with increased concentrations of BrPQ5 contri-buted to the
dose-dependent antiproliferative effects in MCF7 cells.
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Figure 11. Oxidative stress changes of MCF-7 cells after BrPQ5 treatment. The cells were analyzed
by flow cytometry. (A). Representative flow cytometry plots (B). Plotted mean values of the assay
results. The values are expressed as the mean ± SD. (** p < 0.01, *** p < 0.001 compared to control).
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In the anticancer research associated with quinone chemistry, several 1,4-quinone
molecules were developed and have demonstrated proteasome inhibition [48–50]. In light
of these papers and our in silico study results that indicated BrPQ5’s interaction with
proteasome catalytic subunits, we focused on further investigating the BrPQ5 effects on the
catalytic activity of the proteasome. Especially, the β5 catalytic subunit of the proteasome
is the main target for cancer treatment, and there are several clinically used proteasome
inhibitors on the market, such as bortezomib, carfilzomib, and ixazomib [51]. Our results
showed that BrPQ5 and DOXO did not inhibit the proteasome activity, while 100 nM
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carfilzomib treatment caused significant proteasome inhibition (Figure 13). Based on these
insights, it can be interpreted that BrPQ5 interaction with proteasome β5 catalytic subunit,
as determined using in silico experiments, did not inhibit the β5 subunit catalytic activity.
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3. Conclusions

Herein, the brominated PQ analogs (BrPQ1–10) functionalized in amino phenyl moi-
ety were resynthesized and evaluated for their antiproliferative effects in terms of their
inhibition efficiency. The preliminary in vitro antiproliferative activities of all BrPQ analogs
against the full NCI 60 cell line panel was determined by NCI at a 10 µM concentration.
The in vitro preliminary antiproliferative evaluation revealed that the BrPQ analogs with
alkoxy substituent(s) in the amino phenyl moiety have maximum sensitivity toward many
cancer cell lines, particularly CCRF-CEM, HL-60(TB), K-562, MOLT-4, and SR leukemia cell
lines, as well as breast cancer cell lines. BrPQ5 was the most potent against leukemia and
breast cancer cell lines and was selected for five-dose NCI screening. Based on this prelim-
inary one-dose and five-dose antiproliferative screening, further studies are required to
provide more insights into the biological mechanism of action. Thus, in vitro studies were
performed with different cancer cell models. The findings from these analyses hinted at the
promising anticancer activity of BrPQ5 against the MCF-7 breast cancer cell line with the
absence of any significant cytotoxicity against noncancerous VHF93 human fibroblast cells.
Further studies were performed with BrPQ5 on MCF-7 cells to compare it with DOXO, a
well-known chemotherapeutic drug. BrPQ5 treatment caused a strong oxidative stress in-
duction with all tested concentrations and caused dose-dependent cytotoxic activity and the
inhibition of cell proliferation in MCF7 cells. Oxidative stress induction is accompanied by
cell cycle arrest and cellular necrosis in the highest concentration. Accordingly, these were
the key pathways eliciting the anticancer activity of BrPQ5 in the MCF-7 cells. Assertively,
these effects were similar to DOXO, which highlights the therapeutic potential of BrPQ5
in the treatment of breast cancer. BrPQ5 did not significantly inhibit the catalytic activity
of the proteasome, and the proteasomal pathway did not play a role in the anticancer
activity of BrPQ5 in the MCF-7 cells as suggested by in silico studies. The peptidomimetic
inhibitors such as carfilzomib and ONX-0914 tend to occupy all four subpockets (S1–S4)
meant for accommodating P1–P4 residues. In contrast, bortezomib and IPSI-001 occupied
three (S1–S3) and two (S1 and S2) subpockets, respectively [52]. Our compound BrPQ5,
when compared to reported inhibitors, is quite small and could interact only with residues
lining the S1 subpocket in all three cases (beta-5: S1 hydrophobic, beta-2: S1: acidic, and
beta-1: S1 basic). Irrespective of the nature of the pocket, BrPQ5 has shown favorable
interactions in all three subunits. However, it appears that these interactions are insufficient
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to retain this relatively small molecule in the active site in the absence of no interacting
pharmacophoric features with other subpockets. This may be why these compounds fail to
show any significant inhibition in the proteasome inhibition assay. Extending the molecular
architecture with minimal pharmacophoric features to interact with the S2 subpocket may
provide us with a suitable candidate. However, favorable in silico ADME predictions in
terms of drug-likeness, oral bioavailability, and pharmacokinetic parameters suggested
that the brominated BrPQ analogs could serve as promising hit and/or lead analogs for the
discovery of new compounds with more effective proteasome inhibiting activities for future
studies. In our future studies, we plan to further design and synthesize similar structures.
More efforts are currently underway in our laboratory to generate new targeted libraries.

4. Materials and Methods

The molecules investigated within this research have been synthesized by our group [25,28].
Molecular docking simulation was carried out on an HP desktop with an Intel® Core™
i7-6700 CPU @ 3.40GHz × 8 processor, Intel® HD Graphics 530 (SKL GT2) Graphics, 7.7 GB
Memory, and 1 TB disk capacity. Programs and software were installed on Ubuntu 20.04.3
LTS, 64-bit, 3.36.8 version, and X11 windowing system. The software and webserver used
for the simulation and analysis included ChemDraw 19.1, UCSF Chimera, MGLTools-1.5.7,
Autodock-4.2, LigPlot+, and pdb2pqr server.

4.1. Biological Evaluation
4.1.1. In Vitro Antiproliferative Activity at a One-Dose Concentration by NCI

Three different series of the brominated PQ analogs were submitted to the National
Cancer Institute (NCI), Bethesda, USA. As per the standard protocol of NCI, all compounds
were evaluated for their antiproliferative activity at a single-dose assay (10 µM concen-
tration in DMSO) on a panel of 60 cancer cell lines derived from leukemia, non-small cell
lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast cancer as per protocol.
Tested compounds were added to the microtiter culture plates, followed by incubation
for 48 h at 37 ◦C. Sulforhodamine B (SRB), a protein-binding dye, was used for endpoint
determination. The percentage growth of the treated cells was determined and compared
to the untreated control cells, and the results of each tested compound were reported. Data
from the one-dose experiments pertain to the percentage growth at 10 µM [34,35,53].

4.1.2. In Vitro Antiproliferative Activity at a Five-Dose Concentration by NCI

Serial 5 × 10-fold dilutions from an initial DMSO stock solution were performed
before incubation at each concentration. The most promising BrPQ analog (BrPQ5) was
then elevated by DTP-NCI for a higher testing level to determine three dose–response
parameters (GI50, TGI, and LC50) for each cell line after establishing a dose–response curve
from five different concentrations of 0.01, 0.1, 1, 10, and 100 µM for BrPQ5. The detailed
procedure for the latter assay had been elaborated earlier [35,53,54].

4.1.3. Cell Culture and Cytotoxicity Assay

U-251 human glioblastoma, MCF-7, MDA-MB-231 human breast cancers, DU-145
human prostate cancer, HCT-116 human colon cancer, and VHF93 human fibroblast cell
lines were obtained from the American Type Culture Collection. U-251, MDA-MB-231,
DU-145, HCT-116, and VHF93 cells were grown in DMEM (Gibco), and MCF-7 cells were
cultured in DMEM:F12 (Gibco). The culture medium was supplemented with 10% heat-
inactivated fetal bovine serum (Gibco), 10 U/mL penicillin, and 100 µg/mL streptomycin
(Gibco) at 37 ◦C in a 5% CO2 humidified atmosphere. BrPQ5 and doxorubicin HCl (DOXO)
were dissolved in DMSO. DOXO was used as a reference compound to compare the effects
of BrPQ5. For all assays, 0.5% DMSO concentration was not exceeded for cell treatments,
and the control group was treated with 0.5% DMSO.

Cell viability was assessed using the MTT assay (BioMatik). For this purpose, 1 × 104 cells
per well were seeded in 96 well plates and incubated overnight. The cells were then treated
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with increasing concentrations of compounds (2.5, 5, 7.5, 10, 25, 50, 100 µM) for 24 h. After
the treatment, the medium was replaced with fresh media containing 1 mg/mL MTT
dye. The cells were incubated for an additional 3 h for the formation of formazan by
mitochondrial succinic dehydrogenase. Subsequently, the medium was removed, and the
formazan crystals were dissolved in DMSO. The absorbance value of the dye was measured
at 570 nm with a microplate reader (Enspire, PerkinElmer, Waltham, MA, USA). The IC50
values (compound concentrations that cause the 50% reduction in the cell viability) were
calculated using GraphPad Prism 7 Software.

4.1.4. Colony Formation Assay

The effect of BrPQ5 on cell proliferation was assessed using a colony formation assay.
Briefly, 1500 MCF-7 cells per well were seeded in 6-well plates and incubated overnight.
The MCF-7 cells were treated with 5, 10, 25 µM BrPQ5, and 25 µM DOXO along with the
control for 24 h. Then, the wells were washed with PBS, and the cells were grown in the
fresh medium for 10 days. After the incubation period, the medium was removed, and
the cells were fixed with cold methanol for 5 min. The cells were dyed with 0.5% crystal
violet (10% methanol) for 20 min. Then, the dye was discarded, and the wells were washed
with distilled water until the water became colorless. The plates were air-dried, and the
wells were photographed under natural light. The colonies were manually counted from
the photographs.

4.1.5. Oxidative Stress Evaluation

The effect of BrPQ5 on oxidative stress was analyzed with (5-(and-6)-chloromethyl-
2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) (Sigma, St. Louis, MO, USA) stain-
ing. Briefly, 3 × 105 MCF-7 cells per well were seeded in 6-well plates and incubated
overnight. The MCF-7 cells were treated with 5, 10, and 25 µM BrPQ5 along with the
control for 24 h. 25 µM DOXO and 100 µM H2O2 were used as positive controls. Subse-
quently, the cells were collected by trypsinization, and 20 µM of H2DCFDA dye was added
to the cell suspension. The cells were incubated for 30 min and centrifuged at 500× g for
5 min. The supernatant was discarded, and the cells were suspended in PBS. The changes
in oxidative stress with the treatments were analyzed by flow cytometry (BD Biosciences,
San Jose, CA, USA).

4.1.6. Cell Cycle Analysis

The effect of BrPQ5 on cell cycle arrest was evaluated by the Muse Cell Cycle Kit
(Millipore) according to the manufacturer’s protocol. The MCF-7 cells were treated with
5, 10, and 25 µM BrPQ5 and 25 µM DOXO along with the control for 24 h. The cells were
collected by trypsinization and fixed in ice-cold 70% ethanol for 3 h. Subsequently, the cells
were collected by 300× g centrifugation for 5 min. The cell pellet was suspended in 200 µL
assay buffer and incubated for 30 min in the dark. The differences in the cell cycle stages
(G0/G1, S, G2+M, sub G0) were analyzed by flow cytometry (BD Biosciences).

4.1.7. Apoptosis and Necrosis Analysis

The apoptotic and necrotic cell rate was analyzed with the Annexin V-FITC Apoptosis
Detection Kit (Millipore) according to the manufacturer’s protocol. For the assay, the MCF-7
cells were treated with 5, 10, and 25 µM BrPQ5 and 25 µM DOXO along with the control
for 24 h. The cells were collected by 300× g centrifugation after trypsinization. The cells
were resuspended in binding buffer and incubated with Annexin V-FITC and propidium
iodide (PI) for 15 min at room temperature in the dark. The cells were centrifuged at 300× g
for 5 min and resuspended in the binding buffer. The flow cytometric analysis was carried
out immediately by BD Bioscience flow cytometry, and the percentages of apoptotic and
necrotic cells were calculated using BD Bioscience software.
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4.1.8. Proteasome Activity

Proteasome β5 subunit activity was directly measured with the hydrolysis of the
fluorogenic substrate Suc-Leu-Leu-Val-Tyr-AMC (Sigma-Aldrich). The MCF-7 cells were
treated with 5, 10, and 25 µM BrPQ5 and 25 µM DOXO along with control for 24 h.
Then, the cells were scraped on ice, and cell lysates were prepared in lysis buffer (0.25 M
saccharose, 25 mM HEPES, 10 mM MgCl2, 1 mM EDTA, 1 mM DTT) with three freeze–
thaw cycles. The lysates were centrifuged (13,500 rpm, 30 min, 4 ◦C). The total protein
concentration was determined using the Protein Assay Kit (Bio-Rad, San Jose, CA, USA).
Free AMC concentration was used to create a standard curve for quantitative analysis. The
proteasome activity was measured from the supernatants after 30 min incubation with the
fluorogenic substrate in buffer containing 225 mM Tris, 45 mM potassium chloride, 7.5 mM
magnesium acetate, 7.5 mM magnesium chloride, and 1 mM DTT, pH 7.8 using EnSpire
multimode reader (PerkinElmer) at 360 nm excitation/460 nm emission.

4.1.9. Statistics

Statistical analysis was applied using GraphPad Prism 7 software (GraphPad Software,
La Jolla, California, USA). The data are expressed as the mean ± standard deviation (SD) of
at least three independent experiments. Analysis of ANOVA variance with the Tukey’s post
hoc test was used for multiple comparisons. The level of significance was set at p < 0.05.

4.2. In Silico Study

In this study, the free online server SwissADME (http://swissadme.ch/index, accessed
on 15 May 2022) was used to determine the ADME and pharmacokinetic properties of the
brominated BrPQ analog (BrPQ5). The chemical structure was drawn using MarvinSketch
to generate SMILE and inserted directly on the webpage to initiate the prediction process.
The different physical properties, pharmacokinetic parameters, and ADME parameters,
along with the BOILED-Egg chart, were downloaded from the server and analyzed.

A molecular docking simulation was carried out using AutoDock-4.2 and MGLTools-
1.5.7 [55]. The step-by-step procedure is provided below.

(i) Protein preparation: Coordinates of human 20S proteasome subunits beta-1 (chain M),
beta-2 (chain K), and beta-5 (chain L) were manually extracted from the X-ray crystal
structure of the human 20S proteasome in a complex with carfilzomib (PDB:4R67) [56].
The coordinates of subunits beta-1 and beta-2 were then superimposed on beta-5 and
were rewritten using UCSF chimera [57]. This allowed us to use the coordinates of
the co-crystallized ligand (3BV) of subunit beta-5 to be used for all three to specify the
grid box. Then, all the three extracted chains were prepared for docking through the
pdb2pqr server. Further, the non-polar hydrogens were merged, the AD4 atom type
was assigned, and gasteiger charges were added using MGLTools-1.5.7. It was then
saved as respective_protein.pdbqt.

(ii) Ligand preparation: The structure of BrPQ5 was sketched in Chemdraw-19, 3D geome-
try optimized, energy minimized, and saved as ligand.pdb. Torsion and charge were
assigned to the ligand and then saved as ligand.pdbqt using MGLTools-1.5.7.

(iii) Docking preparation, run, analysis: (a) Generation of grid map files: the grid over the
binding site on respective_protein (*.pdbqt) was generated using the coordinates
of carfilzomib (3BV) bound to subunit beta-5 (chain L). The center of the grid was
specified as the center of the protein-bound ligand with a box dimension of 40:42:40
and grid spacing of 0.375 Å. Map types were set considering the atom types in the
BrPQ5. The grid parameter file was then saved as respective_protein.gpf and used to
generate map files using the autogrid4 execution file; (b) Docking: the docking param-
eter file for each subunit was then written for BrPQ5 (respective_protein_BrPQ5.dpf)
with 100 hybrid GA-LS runs, 150 population size, 2,500,000 energy evaluations, and
27,000 generations. The generated map files and the *.dpf files docking simulation
were performed using the autodock4 execution file. (c) Analysis: the top scoring
conformer in the largest cluster of the respective docking log file (*.dlg) was then

http://swissadme.ch/index
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picked for interaction analysis, and the 3D interaction plot was then saved as *.png (in
Supplementary File). All these steps were carried out using MGLTools-1.5.7. Further
2D plots were also generated for each complex to better understand protein–ligand in-
teractions using LigPlot+ [58]. The coordinates of respective_proteins, co-crystallized
ligand and BrPQ5, respective_protein.gpf, and respective_protein_BrPQ5.dpf files
used in the study are provided in the Supplementary File.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ph15070777/s1, Figure S1: Purity chromatogram of the BrPQ1; Figure S2:
Purity chromatogram of the BrPQ2; Figure S3: Purity chromatogram of the BrPQ3; Figure S4: Purity
chromatogram of the BrPQ4; Figure S5: Purity chromatogram of the BrPQ5; Figure S6: Purity
chromatogram of the BrPQ6; Figure S7: Purity chromatogram of the BrPQ7; Figure S8: Purity
chromatogram of the BrPQ8; Figure S9: Purity chromatogram of the BrPQ9; Figure S10: Purity
chromatogram of the BrPQ10; Figure S11: Single-dose in vitro antiproliferative activity of BrPQ1;
Figure S12: Single-dose in vitro antiproliferative activity of BrPQ2; Figure S13: Single-dose in vitro
antiproliferative activity of BrPQ3; Figure S14: Single-dose in vitro antiproliferative activity of
BrPQ4; Figure S15: Single-dose in vitro antiproliferative activity of BrPQ5; Figure S16: Single-dose
in vitro antiproliferative activity of BrPQ6; Figure S17: Single-dose in vitro antiproliferative activity
of BrPQ7; Figure S18: Single-dose in vitro antiproliferative activity of BrPQ8; Figure S19: Single-dose
in vitro antiproliferative activity of BrPQ9; Figure S20: Single-dose in vitro antiproliferative activity
of BrPQ10; Table S1. Antiproliferative activity data as per single dose assay at 10 µM concentration
as percent cell growth of the selected hybrid molecules; Figure S21: Dose response curves of five-dose
in vitro antiproliferative activity of BrPQ5; Figure S22: Five-dose in vitro antiproliferative activity
of BrPQ5; Figure S23: Data of five-dose in vitro antiproliferative activity of BrPQ5; Figure S24. The
physicochemical properties and pharmacokinetic profile of the BrPQ analog (BrPQ5) evaluated using
SwissADME; Figure S25. The generated BOILED-Egg graph of the BrPQ analog (BrPQ5) using
SwissADME; Figure S26. The heatmap illustrating the five-dose in vitro antiproliferative activity
of BrPQ5.
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