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RESEARCH ARTICLE

Molecular signatures of ovarian diseases: Insights from network medicine
perspective
Medi Kori, Esra Gov, and Kazim Yalcin Arga

Department of Bioengineering, Marmara University, Istanbul, Turkey

ABSTRACT
Dysfunctions and disorders in the ovary lead to a host of diseases including ovarian cancer,
ovarian endometriosis, and polycystic ovarian syndrome (PCOS). Understanding the molecular
mechanisms behind ovarian diseases is a great challenge. In the present study, we performed a
meta-analysis of transcriptome data for ovarian cancer, ovarian endometriosis, and PCOS, and
integrated the information gained from statistical analysis with genome-scale biological networks
(protein-protein interaction, transcriptional regulatory, and metabolic). Comparative and integra-
tive analyses yielded reporter biomolecules (genes, proteins, metabolites, transcription factors,
and micro-RNAs), and unique or common signatures at protein, metabolism, and transcription
regulation levels, which might be beneficial to uncovering the underlying biological mechanisms
behind the diseases. These signatures were mostly associated with formation or initiation of
cancer development, and pointed out the potential tendency of PCOS and endometriosis to
tumorigenesis. Molecules and pathways related to MAPK signaling, cell cycle, and apoptosis were
the mutual determinants in the pathogenesis of all three diseases. To our knowledge, this is the
first report that screens these diseases from a network medicine perspective. This study provides
signatures which could be considered as potential therapeutic targets and/or as medical prog-
nostic biomarkers in further experimental and clinical studies.

Abbreviations DAVID: Database for Annotation, Visualization and Integrated Discovery; DEGs:
differentially expressed genes; GEO: Gene Expression Omnibus; KEGG: Kyoto Encyclopedia of
Genes and Genomes; LIMMA: Linear Models for Microarray Data; MBRole: Metabolite Biological
Role; miRNA: micro-RNA; PCOS: polycystic ovarian syndrome; PPI: protein-protein interaction;
RMA: Robust Multi-Array Average; TF: transcription factor
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Introduction

Formation of mature oocytes and production of steroid
hormones that are relevant to oogenesis and folliculo-
genesis occur in the ovary, and dysfunctions lead to
various clinical or subclinical diseases, including poly-
cystic ovarian syndrome (PCOS), ovarian cancer, pre-
mature ovarian failure [Richards and Pangas 2010],
ovarian endometriosis [Aviel-Ronen et al. 2014], and
ovarian cysts [Nahum et al. 2015]. Ovarian cancer,
which can metastasize to extra-abdominal regions, is
the second most encountered gynecologic cancer
worldwide [Didžiapetrienė et al. 2014; Prat 2014].

Endometriosis is defined by the presence of uterine
endometrial tissue in extra-uterine sites, and is
observed in several abdominal regions, including
ovary, peritoneum, retro-cervical area, retro-vaginal
septum, rectum, bladder, appendix, and uterus
[Simoens et al. 2007; Bellelis et al. 2011]; however, the

ovary is the most common region for endometriosis
[Aviel-Ronen et al. 2014]. Approximately 10% of the
reproductive aged women are affected by endometriosis
[Signorilea and Baldi 2015].

PCOS is another complicated, multi-factorial disor-
der that affects reproductive aged women [Sørensen
et al. 2014]. PCOS is defined with hyperandrogenism,
hirsutism and/or hyperandrogenemia, ovarian dysfunc-
tion, oligoanovulation and/or polycystic ovaries with
excluded androgen excess or associated diseases
[Azziz et al. 2009]. Its prevalence is reported as 6 to
20% in reproductive aged women [Johansson and
Stener-Victorin 2013].

The etiological relationship between ovarian cancer
and endometriosis has been studied for almost 90 years.
Sampson [1925] described the association between
endometriosis and ovarian cancer for the first time in
1925, and since then the studies have moved towards
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understanding the mechanism. Though the relationship
between endometriosis and ovarian cancer has been
studied [Sayasneh et al. 2011], the molecular mechan-
istic basis, if any, for this connection are not yet certain.
It was proposed that malignant transformation of
endometriosis to ovarian cancer is multi-factorial,
including genetic and hormonal factors [Pavone and
Lyttle 2015]. Considering the observation that the risk
of developing ovarian cancer is increased in women
with PCOS [Chittenden et al. 2009], a relationship
between these two diseases is also highly probable.

The availability of high-throughput functional genomics
(i.e., transcriptomics, proteomics, and metabolomics) data
will accelerate the understanding of themolecular mechan-
isms that underly ovarian diseases. Ovarian tissue specific
diseases have been analyzed at the transcriptome level
extensively. Wood et al. [2005] analyzed gene expression
profiles in PCOS and identified that TRB3, a putative
protein kinase induced by the transcription factor NF-
kappaB, was significantly down-regulated whereas cAMP-
GEFII, a cAMP sensor, was up-regulated at the transcript
level. Furthermore, these altered genes were associated with
basal and insulin-induced phosphorylation of protein
kinase B (Akt/PKB). Moreno et al. [2007] used microar-
rays, and proposed that cellular proliferation, cell cycle
DNA damage, and apoptosis were up-regulated in ovarian
cancer. In the same year, Hever et al. [2007] conducted a
transcriptome study in ovarian endometriosis. They
reported that the differentially expressed genes were gen-
erally up-regulated, and lymphocyte stimulator (BLyS)
protein was significantly over-expressed in ovarian endo-
metriosis. Bowen et al. [2009] identified alterations in
expression levels of gene products functioning in several
signaling pathways including Wnt, Notch, TGFB/BMP,
Hedgehog, and canonical cell cycle in ovarian cancer.
Moreover, in another study that was carried out by
Kenigsberg et al. [2009] differential expression of several
members of Wnt/β-catenin and MAP-signaling pathways
were reported in PCOS.

The corresponding metabolome has also been exam-
ined in recent years. For example, the eup-regulation of
several fatty acid metabolites was revealed when meta-
static ovarian tumors were compared with healthy tissues
[Fong et al. 2011]. Analyzing plasma samples, the associa-
tion of ovarian endometriosis with eight lipid metabolites
were also identified [Vouk et al. 2012]. In another study,
Atiomo and Daykin [2012] analyzed metabolites in
plasma as a function of their differential levels in PCOS,
and reported that several metabolites including citrulline,
lipid, ornithine, proline, and acetone were down-regu-
lated, and amino acids including arginine, glutamate,
and organic acids such as citrate were significantly up-
regulated.

More recently, data from studies focusing on transcrip-
tional regulatory elements (i.e., transcription factors and
microRNAs) have now become available. Llauradó and
coworkers [2012] reported up-regulation of ETV5, which
regulates cell adhesion in ovarian malignant cells, in ovar-
ian cancer. Chang et al. [2013b] investigated the role of the
transcription factor OCT4 in endometriosis, and found
that it was over-expressed in endometriosis affected tissues.
A few studies intended to identify differentially expressed
miRNAs included Iorio et al. [2007] who compared
miRNAprofiles in ovarian cancer, and reported differential
expression of 29 miRNAs. Similarly other studies reported
differential expression of e.g., hsa-miR-200a, hsa-miR-
200b, hsa-miR-200c, hsa-miR-182, hsa-miR-202, hsa-
miR-483-5p, and hsa-miR-629, in ovarian endometriosis
[Filigheddu et al. 2010; Laudanski et al. 2013]. Very
recently, up-regulation of miR-93 in PCOS was also
reported [Jiang et al. 2015].

Systems biology based network medicine is the applica-
tion of network science towards identifying human dis-
eases [Barabasi et al. 2011] utilizing genome-scale
biological networks, high-throughput experimental data-
sets, and topological analysis methods. Understanding the
molecular mechanisms behind ovarian diseases is a great
challenge that requires the integration of biological infor-
mation from different levels that is well suited to high-
throughput functional genomics data and network-based
approaches. Despite several experimental efforts, findings
are generally inadequate to expose the central biological
mechanisms of the pathologies that can map the intercon-
nectivities between the diseases. Therefore, in the present
study, we analyzed datasets from an integrated and com-
parative perspective (Figure 1). Using statistical analyses of
the reported transcriptome datasets, we identified differen-
tially expressed genes. For each dataset, protein-protein
interaction networks were reconstructed and topological
analyses were performed. Integration of the data with a
genome-scale metabolic model and a comprehensive tran-
scriptional regulatory network (transcription factor-
miRNA-target gene) yielded prediction of reporter biomo-
lecules (metabolites, proteins, transcription factors, and
miRNAs) and biological signatures on central biological
mechanisms of the pathologies.

Results

Transcriptomic signatures: Differentially expressed
genes

In the present study, we employed and comparatively
analyzed six gene expression datasets for ovarian cancer,
ovarian endometriosis, and PCOS (Table 1). Statistical
analyses were performed individually to identify DEGs
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and their regulatory patterns (i.e., up- or down-regulation)
(Figure 2A). Moreover, functional enrichment analyses
were performed on down- and up-regulated DEG sets.

As summarized in Figure 2A, a total of 8,119 genes,
5,100 down- and 3,019 up-regulated, were detected as
differentially expressed among ovarian and non-ovar-
ian cancer samples. In ovarian endometriosis 2,982
DEGs significantly down-regulated and 2,794 DEGs
were significantly up-regulated considering disease

and control states. Amongst PCOS and healthy sam-
ples, 1,179 genes were down-regulated whereas 618
genes were up-regulated. The comparative analyses of
DEGs indicated that there were 403 mutual genes
between three diseases, but their regulatory patterns
(down or up) were not the same in all. Accordingly,
31 down-regulated genes and six up-regulated genes
were mutual among all diseases when the regulatory
patterns were also taken into account (Figure 2B,C).

Figure 1. The multi-stage analysis methodology employed in the present study. (A) Gene expression datasets related to three
ovarian tissue diseases were obtained from the Gene Expression Omnibus (GEO) database. Each dataset was statistically analyzed
under Bioconductor platform to identify differentially expressed genes (DEGs). (B) Functional enrichment analyses of DEGs were
performed to identify significantly enriched pathways, Gene Ontology annotation terms, and diseases. (C) Protein-protein interaction
networks were reconstructed around DEGs, and the topological analyses were performed via Cytoscape to identify hub proteins. (D)
DEGs were integrated into genome-scale metabolic model via BIOMET Toolbox to identify reporter metabolites, and pathway
enrichment analyses were performed through Metabolite Biological Role (MBRole) tool to understand the biological roles of reporter
metabolites. (E) To identify reporter micro-RNA (miRNA) and transcription factors (TF), miRNA-target gene and TF-target gene
interactions were downloaded from miRTarbase and PAZAR databases, respectively. DEGs were integrated with those networks
using MATLAB and the statistically significant (p<0.05) miRNAs and TFs were considered as the reporter transcriptional regulatory
elements. The target DEGs of reporter TFs and miRNAs were subjected to pathway enrichment analyses.

Table 1. Transcriptome datasets employed in the present study.
GEO Reference
Series Disease State Sample Subsets Array Reference

GSE7463 Ovarian
Cancer

9 Diseased (Pre-Treated Ovarian
Adenocarcinomas),
10 Control (Pre-Treated Benign Ovarian Serous
Cystadenomas)

Affymetrix Human Genome U95 Version 2 Moreno et al.
2007.

GSE14407 Ovarian
Cancer

12 Diseased (Ovarian Cancer Epithelial Cells),
12 Control (Normal Ovarian Surface Epithelial)

Affymetrix Human Genome U133 Plus 2.0 Bowen et al.
2009

GSE7305 Endometriosis 10 Diseased (Ovarian Endometriosis Tissue),
10 Control (Normal Endometrium Tissue)

Affymetrix Human Genome U133 Plus 2.0 Hever et al. 2007

GSE1615a PCOS 5 Diseased (Untreated, Theca cells),
4 Control (Untreated, Theca Cells)

Affymetrix Human Genome U133A Wood et al. 2005

GSE1615b PCOS 5 Diseased (Untreated, Theca Cells),
4 Control (Untreated, Theca Cells)

Affymetrix Human Genome U133B Wood et al. 2005

GSE10946 PCOS 5 Diseased (Lean, Cumulus Cells), 6 Control
(Lean, Cumulus Cells)

Affymetrix Human Genome U133 Plus 2.0 Kenigsberg et al.
2009
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Most of the proteins encoded by mutual down-regu-
lated genes were classified into four groups according
to their functions or activities: (i) ELAVL1, HERPUD1,
SHROOM3, SUZ12, TMOD3, and ZFP36L2 act as
binding proteins, (ii) CHP1, CLIC4, MAGI1,
MAPKAP1, NSF, RAPGEF2, TRIM33, UBE2J1, and
XIAP are enzymes or enzyme inhibitors, (iii) ESR1
and NID1 serve as receptor, and (iv) JAZF1 and
ZDHHC2 are zinc finger proteins. Among others:

CENPV is a centromere protein, CMTM acts as a
cytokine, FBXO28 is an F-box protein, PSPC1 is an
mRNA splicing factor, FAM213A and CBFB are regu-
latory proteins, TMEM30A is a transmembrane pro-
tein, and TPD52L1 is a tumor associated protein. The
remaining four proteins, CCDC176, CRNDE,
PROSER1, and SERF2, are noted as uncharacterized.
Among mutual up-regulated genes, COX17 is a carrier
protein, CYCS acts as cytochrome c, ICAM1 is an

Figure 2. Differentially expressed genes (DEGs) and comparative analyses of mutual DEGs in ovarian tissue related diseases. (A) The
distribution of (DEGs). For each dataset, DEGs which had statistically significant changes in their expression profiles among diseased
and healthy samples were determined independently. Down-regulation and up-regulation of DEGs were represented by light and
dark colors, respectively. (B) Venn diagram representing the comparison of down-regulated DEGs between the investigated diseases.
The gene symbols representing the 31 mutual down-regulated DEGs were given below the diagram. (C) Venn diagram representing
the comparison of up-regulated DEGs between the investigated diseases. The gene symbols representing the 6 mutual up-regulated
DEGs were given below the diagram.
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intercellular adhesion molecule, SRGN is a proteogly-
can, STK17B is an enzyme (serine/threonine kinase),
and TTC39B is uncharacterized.

The enrichment analyses based on situated DEGs for
each disease indicated significant results for five path-
ways in all diseases: focal adhesion, adheres junction,
ECM-receptor interaction, MAPK signaling pathway,
and pathways in cancer (Figure 3A). On one hand, cell
adhesion molecules, Fc gamma-R mediated phagocyto-
sis, and systemic lupus erythematosus were up-regulated
in both ovarian cancer and endometriosis. On the other
hand, the WNT signaling pathway was down-regulated
in both ovarian cancer and PCOS. The 403 DEGs com-
mon among the three diseases were statistically enriched
with spliceosome, prostate cancer, Parkinson’s disease,
and small cell lung cancer in addition to these biological
processes or molecular pathways.

Proteomic signatures: Hub proteins

Protein-protein interaction (PPI) networks were recon-
structed around proteins encoded by DEGs via their
physical interactions. For three diseases, PPI sub-net-
works were constructed individually around down and
up-regulated DEGs. In topological analyses of the PPI
sub-networks, degree (local-based) and betweenness
centrality (global-based) metrics were simultaneously
investigated to determine the highly connected pro-
teins, i.e., hubs (Table 2), which might play significant
roles in the disease progression.

Among hub proteins, SMAD2, SMAD3, AR, SIRT7,
and PCNA were specific to ovarian cancer. SMAD3 and
SMAD2 are receptor regulated SMAD (R-Smad) mem-
bers and have crucial roles in the transforming growth
factor-β (TGF-β) superfamily signaling pathway, which
has been associated with cancer development [Shi and
Massague 2003; Xue et al. 2014]. The androgen receptor
(AR) is a widespread steroid receptor expressed in
approximately 80% of ovarian cancer cases [Aragon-
Ching 2014; Ligr et al. 2011], and expressed in mam-
mary gland, ovary, uterus, fallopian tubes, and the vagina
in mammals [Chang et al. 2013a]. SIRT7 belongs to the
Sirtuin gene family, which may act as a tumor promoter
or suppressor [McGlynn et al. 2015], and the role of
SIRT7 as an oncogene has been previously identified in
ovarian cancer [Wang et al. 2015]. Proliferating cell
nuclear antigen (PCNA) plays a role in various cellular
processes [Stoimenov and Helleday 2009] and is up-
regulated in cancer cells [Moldovan et al. 2007].

Statistically most significant hub proteins for ovarian
endometriosis were VHL, BRCA1, EGR1, FYN, and
CTNNB1. VHL is a tumor suppressor, which is expressed
in the ovary and endometrium tissues, and its inactivation
may give rise to ovarian tumors [Lu et al. 2014]. BRCA1
mutations have a high incidence in women with breast
cancer, and it has been proposed that reduced BRCA1
expression might play a substantial role in endometriosis
pathophysiology [Govatati et al. 2014]. Similar to VHL,
EGR1 also acts as a tumor suppressor, and may suppress
glioma, lung, and breast cancer; however, its induction of

Figure 3. Significant enrichment results for signaling, regulatory, and metabolic pathways. (A) Pathway enrichment analysis of
differentially expressed genes (DEGs) for the ovarian cancer, ovarian endometriosis, and polycystic ovarian syndrome (PCOS) via the
Database for Annotation, Visualization and Integrated Discovery (DAVID) functional annotation tool based on the information on
gene-reaction-pathway associations from Kyoto Encyclopedia of Genes and Genomes (KEGG) database for Homo sapiens. (B) Pathway
enrichment analysis of reporter metabolites for the inspected diseases via the Metabolite Biological Role (MBRole) bioinformatics
tool. Light grayscale represents down-regulation, whereas dark grayscale represents up-regulation. Pathways represented by
intermediate grayscales include both down-regulated and up-regulated branches.
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prostate cancer progression is noted [Kim et al. 2014]. Fyn
expression is up- regulated in several cancers including
melanoma, glioblastoma, prostate cancer, and squamous
cell carcinoma of the head and neck [Saito et al. 2010].
Moreover, Fyn has been identified in mammalian oocytes
[McGinnis et al. 2009]. CTNNB1 (β-catenin) is a core
molecule of the WNT/β-catenin pathway. The dysregula-
tion of this pathway was associated with many cancers
including ovarian cancer, and CTNNB1 overexpression
was observed in ovarian cancer [Bodnar et al. 2014].

MYC, MAPK1, SUMO2, SRC, and IKBE were the top
highlighted hubs that were specific to PCOS. The MYC
proto-oncogene, is activated or up-regulated in more than
50% of cancers. MYC generally behaves as a transcription
factor and identified as one of the precursors of tumorigen-
esis [Gabay et al. 2014]. Dysregulation of multiple signaling
pathways has been associated with PCOS and linked with
androgen abundance [Ortega andDuleba 2013]. SUMO2 is
a small ubiquitin-like modifier and takes a role in post-
transcriptional regulation of several target proteins [Su and
Li 2002]. Src is a protein kinase that has roles in tumor
progression, invasion, and metastasis [Sen and Johnson
2011]. IKBKE is crucial for antiviral signaling pathway
regulation, and is also defined as an oncogene in breast
cancer [Hutti et al. 2009].

Additionally, according to comparative analysis of
hub proteins, CDK1, EGFR, H2AFX, KIAA0101,
PPP1CA, and YWHAZ were the mutual proteomic
signatures for both ovarian cancer and endometriosis.
With the exception of EGFR, their regulatory patterns
were inversely correlated between two diseases (i.e.,
down-regulated in ovarian cancer, and up-regulated in
ovarian endometriosis). Among those, CDK1, PPP1CA,
and YWHAZ proteins have significant roles in oocyte
meiosis. Considering ovarian endometriosis and PCOS,
three hubs (HDAC5, TGFBR, and TP53) were promi-
nent. Similarly, two proteins (ESR1 and SUMO1) were
identified as mutual hubs for ovarian cancer and PCOS.

Metabolic signatures: Reporter metabolites

Reporter metabolite analyses were performed using
situated DEGs, and down and up- regulated reporter
metabolites were individually discovered for each
pathology (Table 2). An aldehyde compound (i.e., 5-
hydroxyindoleacetaldehyde), coenzymes NAD and
NADH, and two retinoid derivatives (13-cis-retinal,
and 9-cis-retinoate) were significantly down-regulated;
whereas formate, 5,10-methylenetetrahydrofolate, suc-
cinate, nicotinamide ribonucleoside, and xanthine were

Table 2. Most significant reporter biomolecules (p<0.05) for reporter metabolites, proteins, TFs, and miRNAs.

Disease
State

Gene
Expression
Profile Hub Proteins Reporter Metabolites Reporter TFs Reporter miRNAs

Ovarian Cancer Down-
Regulated

SMAD2, SMAD3,
ESR1, AR, EGFR

5-
hydroxyindoleacetaldehyde,
13-cis-retinal, 9-cis-retinoate,
NAD, NADH

HIF1A, STAT1, STAT6, RUNX1,
EPAS1, RB1, ESR1, TP53, SOX2,
FOXA1, RBL2, TRIM28, EGR1,
TAL1, PRDM14, ZNF263

miR-19b-3p, miR-130b-3p, miR-9-5p,
miR-128-3p, miR-181a-5p, miR-122-
5p, miR-148b-3p, miR-132-3p, miR-
101-3p, miR-183-5p

Up-
Regulated

KIAA0101,
YWHAZ, SIRT7,
SUMO1, CDK1,
PCNA, PPP1CA
H2AFX,

Formate, 5,10-methylene-
THF, succinate, nicotinamide
ribonucleoside, xanthine

STAT1, EPAS1, FOS, STAT6, HIF1A,
TFAP2C, RB1, RBL2, TP53, E2F1,
RUNX1

miR-484, miR-24-3p, miR-125b-5p,
miR-149-5p, miR-744-5p, miR-18a-
3p, miR-877-3p, miR-222-3p, miR-
331-3p, miR-423-3p, miR-93-3p

Ovarian
Endometriosis

Down-
Regulated

KIAA0101, TP53,
YWHAZ, VHL,
BRCA1, EGFR,
CDK1, H2AFX,
PPP1CA

Ceramide pool, 1,2-
diacylglycerol-bile-PC pool,
1-lyso-2-arachidonoyl-
phosphatidate, sphingosine-
1-phosphate

RBL2, RB1, FOS, TFAP2C, STAT6,
E2F4, ESR1, HIF1A, FOXA1, STAT1,
EPAS1, TP53, ESR2

miR-34a-5p, miR-24-3p, miR-877-3p,
miR-744-5p, miR-149-5p, let-7e-5p,
miR-125b-5p, miR-18a-3p, miR-100-
5p, let-7a-5p, miR-222-3p, miR-
1260b, miR-196a-5p, miR-25-3p,
miR-324-5p

Up-
Regulated

EGR1, FYN,
CTNNB1,
TGFBR1, HDAC5

Prostaglandin I2,
selenomethionine,
trimethylamine, choline,
ethanolamine

STAT1, HIF1A, EPAS1, RUNX1,
ESR1, STAT6, TP53, SOX2, BACH1,
SPI1, FOXA1, TRIM28, RB1, EGR1,
TAL1

miR-19b-3p, miR-130b-3p, miR-9-5p,
miR-128-3p, miR-181a-5p, miR-122-
5p, miR-148b-3p, miR-132-3p, miR-
101-3p, miR-183-5p, miR-221-3p,
miR-10a-5p, miR-146a-5p, miR-106b-
5p

Polycystic Ovary
Syndrome

Down-
Regulated

MYC, TP53,
ESR1, TGFBR1,
MAPK1, HDAC5

Alanine, pyruvate, GD1a,
GM1b, L-lysyl-tRNA(lys)

STAT6, FOS, RB1, AMPD3,
CAND1.11, HIF1A, TP53, EGR1,
ESR1, EPAS1, ZNF263, TFAP2C,
DDIT3, RUNX1, STAT1, ETS1,
NFYA, RBL2, FOXA1

miR-335-5p, miR-744-5p, miR-320a,
miR-7-5p, miR-93-5p, miR-93-3p, let-
7a-5p, let-7e-5p, miR-423-3p

Up-
Regulated

SUMO2, TP53,
SUMO1, SRC,
IKBKE

Ferricytochrome C,
ubiquinol, (5Z,8Z,11Z)-
eicosatrienoyl-CoA,
activation-ppara

STAT6, RB1, HIF1A, RBL2, STAT1,
E2F4 ESR1, ETS1, GATA3, TP53,
FOXA1, EPAS1, ZNF263

miR-877-3p, miR-196a-5p, miR-197-
3p, miR-100-5p, miR-15a-3p, miR-
1236-3p, miR-1260b, miR-147b, miR-
663b, miR-30c-5p, miR-15b-5p, miR-
26a-5p
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up-regulated in ovarian cancer. The metabolic profiling
study by Ke and coworkers [2015] identified multiple
specific metabolic biomarkers, including 5-hydroxyin-
doleacetaldehyde for epithelial ovarian carcinoma, and
this was the first study that reports 5-hydroxyindolea-
cetaldehyde as an ovarian cancer biomarker. Retinoids
are chemically related to vitamin A and have been
studied as a substance for countless cancer treatments
including ovarian cancer. It was proposed that a con-
siderable intake of retinoid derivatives triggers a decline
in ovarian cancer development [Whitworth et al. 2012].
Formate is the core metabolite of the folate-mediated
one-carbon metabolic pathway which is significant for
DNA synthesis, repair, and methylation. Assessment of
the concentration of formate in folate and B12 absence,
and folate absence was associated with increased cancer
risk [Lamarre et al. 2013; Stevens et al. 2007]. Although
no significant association between folate and ovarian
cancer was reported, it was known that folate receptor
alpha is up-regulated in ovarian cancer [Harris et al.
2012]. A core enzyme of folate metabolism, MTHFR,
catalyzes the reduction of 5, 10-methylene THF to 5-
methyl THF. Absence of folate has been associated with
ovarian cancer, and the role of MTHFR in the carcino-
genesis was reported [Zhang et al. 2012]. Succinate, an
intermediate of the citric acid cycle, plays an essential
role in ATP formation in mitochondria, and modifies
proteins post-translationally. Succinate stabilizes the
transcription factor HIF1A (hypoxia-inducible factor-
1α) and activates macrophages in particular malignan-
cies [Mills and O’Neill 2014]. Nicotinamide ribonucleo-
side (also called nicotinamide riboside) is a resource of
niacin (vitamin B3) and precursor of NAD [Chi and
Sauve 2013]. NAD is an essential component for energy
and signaling pathways that regulate DNA repair,
apoptosis, and cell cycle. Thereby NAD metabolism
has been connected with cancer progression [Chiarugi
et al. 2012]. Xanthine is the initial compound that
shows the presence of abnormal purine profile.
Despite the low xanthine serum level, it increases
according to abnormal purine salvage pathways
[Pundir and Devi 2014].

In ovarian endometriosis most significant under-
expressed reporter metabolites were lysophosphatidic
acid (1-lyso-2-arachidonoyl-phosphatidate), diacylgly-
cerol (1,2-diacylglycerol-bile-PC pool), and two sphin-
golipid metabolites (i.e., ceramide, and sphingosine).
On the contrary, a prostaglandin member (prostaglan-
din I2), selenomethionine, trimethylamine, and choline
ethanolamine were s over-expressed reporter metabo-
lites. The effect of lysophosphatidic acid on endome-
triosis and ovarian cancer was previously reported [Ye
and Chun 2010]. Ceramide and sphingosine-1-

phosphate are the two primary sphingolipids in various
signaling pathways including apoptosis, stress
responses, and intracellular trafficking. Curiously, they
present opposing effects on cell survival. For example,
ceramide leads to apoptosis whereas sphingosine-1-
phosphate leads to cell survival [Gatt and Dagan
2012]. Prostaglandin I2 is a metabolite of the arachido-
nic acid pathway and high levels of prostaglandins were
reported in peritoneal fluids of endometriosis patients
[Cathcart et al. 2011; Meresman and Olivares 2012].
Selenomethionine has been identified as a probable
agent that can be used in prostate cancers to inhibit,
delay, or reverse carcinogenesis [Nyman et al. 2004].
Trimethylamine is an aliphatic amine, which has a
potential to generate a highly toxic carcinogen com-
pound N-nitrosodimethylamine, and cause aberrant
neurological symptoms in end-stage renal patients
[Bain et al. 2006]. Choline metabolites were reported
as potential biomarkers for prostate cancer diagnosis
[Awwad et al. 2012]. Ethanolamine is one of the sub-
stantial metabolites required for synthesis of two core
phospholipids (phosphatidylcholine and phosphatidy-
lethanolamine) which constitute more than 50% of
the phospholipid content in eukaryotic membranes
[Gibellini and Smith 2010].

Alanine, pyruvate, and several ganglioside molecules
(GD1a, GM1b), were significantly down-regulated in
PCOS. In contrast, ferricytochrome c ubiquinol, eicosatrie-
noyl coenzyme A, and ‘activation-ppara’ were the most
significant over-expressed metabolites in PCOS.
Modification of the glycolysis and alanine synthesis path-
ways were encountered in pre-tumor stages of cancers
[Munoz-Pinedo et al. 2012]. Gangliosides, including glyco-
sphingolipids, are abundant in central nervous system tis-
sues. They are tumor-associated antigens, important cell-
surface receptors, and they also attend in diverse biological
processes (cell differentiation and growth) [Sun and Jiang.
2012]. Ubiquinol functions in proton/electron transloca-
tion in oxidative phosphorylation, and inhibition of apop-
totic pathways [Sedlák et al. 2010]. Ubiquinol was proposed
as a potential biomarker for oxidative stress and tissue
energy requirements [Miles et al. 2005]. Furthermore, ‘acti-
vation-ppara’ reaction stimulates nuclear receptor protein
encoded by PPARA gene.

Functional enrichment analyses of reporter metabolites
demonstrated that several metabolic pathways (i.e., pyri-
midine, purine, selenoamino acid metabolism) and
Parkinson disease pathways were common in three dis-
eases (Figure 3B). Non-small cell lung and prostate cancer
disease pathways, spingolipid and fatty acid metabolic
pathways, and calcium and phosohatidylinositol signaling
pathways were highlighted down-regulated pathways for
both ovarian cancer and endometriosis.
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Regulatory signatures: Reporter TFs and miRNAs

Transcriptional and translational regulatory compo-
nents, i.e., TFs and miRNAs, were also determined
based on transcriptomic alterations in disease states.
The results have been mapped onto the regulatory net-
work, and highly significant TFs and miRNAs were
defined as reporter transcriptional regulatory compo-
nents (Table 2, Figure 4). Based on comparative ana-
lyses, disease specific and common transcriptional
regulatory compounds were identified.

Reporter TFs, PRDM14, and E2F1 were highlighted
in ovarian cancer, whereas ESR2, BACH1, and SPI1
were highlighted in endometriosis. In addition,
AMPD3, CAND1.11, DDIT3, ETS1, NFYA, and
GATA3 were reporter TFs specific to PCOS. Thitrteen
TFs were determined as mutual transcriptional regula-
tory components for all three diseases (Figure 4A). We
also screened reporter miRNAs (Figure 4B). In general,
encountered reporter TFs and miRNAs were linked
with cell cycle processes and cancer formation. For
example, the E2F family (E2F1 and E2F4) have a core

role in cell cycle control [Iwanaga et al. 2006]; EGR1
[Chen et al. 2010] and STAT family members STAT1
and STAT6 [Mitchell and John 2005] play a role in the
regulation of cell growth, differentiation, and apoptosis.
Differential DDIT3 expression was observed under cel-
lular stress [Bento et al. 2009]; ETS1 behaves as a proto-
oncoprotein [Dittmer 2003]. Similarly, miR-21,
miR221, and miR222 family members function in
oncogenesis [Hayes et al. 2014]. In comparison,
RUNX1 [Goyama et al. 2013], TP53 [Beckerman and
Prives 2010], BACH1 [Hira et al. 2007], miR-193b
[Yang et al. 2014], and miR-124-3p [Li et al. 2014] act
as tumor suppressors; and HIF1A [Anam et al. 2015],
PRDM14 [Nishikawa et al. 2007], TRIM28
[Hatakeyama 2011], miR- 15b-5p [Yang et al. 2015],
miR-30c-5p [Oksuz et al. 2015], and miR-16-5p [Zhang
et al. 2015] have been associated with various cancers.

Comparative analyses revealed that 32 miRNAs were
common transcriptional regulatory components for all
three diseases. While there were mutual TFs and
miRNAs between the three diseases, regulatory patterns
of some of these components were inversely correlated.

Figure 4. Venn diagrams representing the reporter transcription factors (TFs) and micro-RNAs (miRNAs). (A) Reporter TFs. (B)
Reporter miRNAs. Venn diagrams were used to compare the reporter transcriptional regulatory elements among the three ovarian
pathologies. The compounds determined via down-regulated differentially expressed genes (DEGs) were highlighted with black
color; whereas the gray colored compounds were determined using up-regulated DEGs. The overlapping regulatory compounds
were represented by white color. The gene symbols representing the mutual regulatory compounds (13 TFs and 32 miRNAs) are
below the Venn diagrams.
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For example, the TFs: EGR1, TAL1, TRIM28, SOX2,
and miRNAs: miR-101-3p, miR-128-3p, miR-181a-5p,
miR-9-5p were down-regulated in ovarian cancer while
they were up-regulated in ovarian endometriosis. On
the contrary FOS, TFAB2C, and miR-125b-5p were up-
regulated in ovarian cancer and down-regulated in
ovarian endometriosis. Furthermore, E2F4 and miR-
1260b were down-regulated in ovarian endometriosis
and up-regulated in PCOS. The miRNAs: miR-15b-5p,
miR-26a-5p, miR-30c-5p were down-regulated in ovar-
ian cancer and up-regulated in PCOS, while miR-423-
3p and miR-93-3p were up-regulated in ovarian cancer
and down-regulated in PCOS.

The common reporter TF-target DEG and miRNA-
target DEG interactions were visualized (Figure 5A, B).
Moreover, the target DEGs of reporter TFs and
miRNAs were subjected to pathway enrichment ana-
lyses (Figure 5C). Accordingly, several cancer pathways
(small cell lung, prostate, bladder, colorectal, and pan-
creatic cancers), p53 signaling pathway, progesterone-
mediated oocyte maturation, and oocyte meiosis came
into prominence when targets of ovarian cancer specific
reporter TFs and miRNAs were investigated.
Furthermore, Fc gamma R-mediated phagocytosis can-
cer pathways like bladder, prostate, and endometrial
cancer as well as p53 signaling pathway were

highlighted in ovarian endometriosis. Disease pathways
for neurodegenerative diseases (i.e., Alzheimer’s,
Huntington’s, Parkinson’s diseases) were significantly
enriched in PCOS (Figure 5D).

Discussion

Considering the crucial role of the ovary in the female
reproductive system, the identification of functional
biological entities (i.e., transcripts, miRNAs, proteins,
metabolites, pathways) taking key roles in the mechan-
isms of ovarian-related diseases is a very challenging
task. Though the relationships between endometriosis,
ovarian cancer, and PCOS have been studied
[Chittenden et al. 2009; Sayasneh et al. 2011; Pavone
and Lyttle 2015], the molecular mechanisms behind
their connections are not yet certain.

Although individual transcriptome studies have been
performed for ovarian cancer, ovarian endometriosis,
and PCOS, the gene expression datasets were not ana-
lyzed from an integrated and comparative perspective.
Therefore, in the present study, we integrated disease
specific gene expression datasets with comprehensive
human biological networks in order to uncover central
biological mechanisms behind the diseases.

Figure 5. Transcriptional regulatory networks. (A) The network represents the interactions between the mutual reporter transcription
factors (TFs) and their targeted differentially expressed genes (DEGs). (B) The network represents the interactions between the
mutual reporter micro-RNAs (miRNAs) and their targeted DEGs. (C) The statistically significant (p<0.05) pathways enriched with DEGs
targeted by mutual TFs and miRNAs. The presence and absence of statistical significance were represented by + and – symbols,
respectively. (D) The statistically significant (p<0.05) pathways for DEGs targeted by reporter miRNAs and TFs for each disease.
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By individual analyses of each gene expression data-
set, hundreds of genes with statistically significant
changes in their expression profiles were identified
and further analyzed. Results of the statistical analyses
demonstrated that the majority of the DEGs were
down-regulated in ovarian cancer and PCOS.
However, the number of down and up- regulated
DEGs were close to each other in endometriosis. The
comparative analyses of the DEGs indicated that 31
down- and six up-regulated genes were common
among all three diseases. The central biological
mechanisms of these ovarian related diseases were fre-
quently down-regulated.

Reconstruction and analysis of biological networks
(protein-protein interaction, transcriptional regulatory,
and metabolic) represents a great potential to under-
stand the central mechanisms of these diseases.
Therefore, in the present study, we integrated results
of statistical analyses with these biological networks to
identify functional biological entities (i.e., transcripts,
miRNAs, proteins, metabolites, pathways) taking key
roles in the mechanisms of ovarian-related diseases.
Initially, we reconstructed a PPI network and employed
two topological parameters simultaneously to define
central proteins (i.e., hubs), which can be considered
as candidate biomarkers or drug targets. It was notable
that hubs of investigated diseases have the potential to
contribute formation or initiation of cancer develop-
ment. Several hub proteins (i.e., PCNA, FYN, and SRC)
have been associated with cancer development or pro-
gression [Moldovan et al. 2007; Saito et al. 2010; Sen
and Johnson 2011]. In addition, these hub proteins had
tumor suppressor (VHL and EGR1) [Lu et al. 2014;
Kim et al. 2014], oncogenic (SIRT7 and IKBKE)
[McGlynn et al. 2015; Hutti et al. 2009], and proto-
oncogenic (MYC) functions in human cancers [Gabay
et al. 2014]. Further, they also have roles in cancer
linked signaling pathways such as TGF-β signaling
pathway (SMAD2 and SMAD3) [Xue et al. 2014] and
WNT/β-catenin signaling pathway (CTNNB1) [Bodnar
et al. 2014]. The over-expression of AR protein in
ovarian cancer, down-regulation of CTNNB1 and
BRCA1 in ovarian endometriosis, and down-regulation
of MAPK1 in PCOS were in line with previously
reported studies [Govatati et al. 2014; Ortega and
Duleba 2013].

Metabolism is an indicator of the proper function-
ing, thereby health, and metabolites are the intermedi-
ates and products of the metabolic reactions that
inherently occur inside the cells. Thus, in the present
study, we identified the reporter metabolites around
which significant changes in gene expression patterns
occur in disease conditions. Proliferation of cancer cells

requires an extreme amount of energy whereby energy
metabolism (i.e., the metabolism of glucose and other
carbohydrates) plays a key role. It has been established
that generally cancer cells generate their energy using
glycolysis instead of oxidative phosphorylation even
though oxygen is available for rapid growth [Vazquez
et al. 2010]. Up-regulation of the NAD precursor and
down-regulation of NAD leads to the proposal that
cancer cells continuously produce NAD precursor and
use NAD for energy production. Though endometriosis
is a benign disease, but has a potential for malignant
transformation [Pavone and Lyttle 2015], we encoun-
tered metabolites that were associated with cancer pro-
cesses (apoptosis, cell survival) in ovarian
endometriosis. In addition, identification of metabolites
that were previously associated with prostate cancer
(i.e., selenomethionine and choline) was noteworthy.
Both endometriosis and prostate cancer can be consid-
ered sex-hormone related diseases, and even their treat-
ment methods intersect at a certain point. For example,
gonadotropin releasing hormone (GnRH) analogues
such as leuprorelin and goserelin are both used in
endometriosis and prostate cancer treatments [Wilson
et al. 2007]. In the present study, we determined an
association between ovarian endometriosis and prostate
cancer at the metabolic level. Furthermore, reporter
metabolite analyses indicated that metabolites that
were related to oxidative stress/damage (i.e., ferricyto-
crome c and ubiquinol) were aberrant in PCOS.
Oxidative stress is defined as a balance disturbance
between the production of reactive oxygen species and
antioxidant defenses. Obesity and insulin resistance can
lead to an increase in the oxidative stress, and they are
widespread in PCOS women [Desai et al. 2014].
Therefore, to encounter ferricytocrome c and ubiquinol
in PCOS is a plausible consequence. Moreover, alanine
and pyruvate were also dysregulated in PCOS. Overall
these results reflected the alteration in energy produc-
tion processes under PCOS.

Pathway information is essential for successful bio-
logical systems modelling. According to the results of
pathway enrichment analyses, cell communication and
connection pathways (i.e., adherens junction, ECM-
receptor interaction, focal and cell adhesion) came
into prominence. In ovarian cancer, adherens junction
and focal adhesion pathways were under-expressed
which might be due to the observation that tumor
cells lose their adhesion properties. The focal adhesion
pathway was up-regulated in ovarian endometriosis. It
has been reported that focal adhesion associated pro-
tein (FAK) was over-expressed in ovarian endometrio-
sis, and its possible contribution to disease pathogenesis
and progression was proposed [Mu et al. 2008].
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Signalling pathways and receptor interactions were
altered in diseased cells, thus, as expected, the ECM-
receptor interaction was over-expressed. Phagocytosis
has a crucial role in host-defence mechanisms. Our
results were in agreement with the proposal that a
group of body protection systems should be activated
in disease conditions [Neuberg et al. 2011].
Endometriosis has also been considered as an autoim-
mune disease, and increased cancer risk in autoimmune
diseases such as systemic lupus was reported [Bernatsky
et al. 2013]. Therefore, the significant enrichment
among endometriosis, systemic lupus erythematous,
and ovarian cancer is not surprising. Additionally,
alterations in two signalling pathways (MAPK and
Wnt) were highlighted. The MAPK signalling pathway
has a crucial role in signal transduction and involved in
comprehensive processes, including gene expression,
hormone response, embryogenesis, and cell survival
[Manna and Stocco 2011]. WNT signalling pathway
plays a role in a variety of biological processes such as
normal follicular development and ovarian functions,
and it was reported that deviant WNT signalling under-
lies multifarious diseases [Clevers and Nusse 2012;
Gatcliffe et al. 2008]. As expected, signal transduction
pathways were indicating differences due to disease
response. Already, the signalling pathways (MAPK
and Wnt) were down-regulated in PCOS and this out-
come is in accord with previous studies [Liu et al. 2015;
Kenigsberg et al. 2009]. Sphingolipid metabolism, fatty
acid metabolism, non-small cell lung cancer, prostate
cancer, calcium signalling pathway, and phosphatidyli-
nositol signalling system pathways were consistently
under-expressed in ovarian cancer and endometriosis.
In comparison, the regulatory directions of other path-
ways varied among the diseases. Disrupted sphingolipid
metabolism was reported in several pathologies includ-
ing proliferative, metabolic, and neuronal diseases [Rao
et al. 2013]. Steroid hormones are synthesized and
secreted from the ovary. Accordingly, in ovarian tissue
related diseases we predict alterations in steroid hor-
mone biosynthesis and fundamental building blocks
like nucleic acids and amino acids. Alterations in
associated pathways were not surprising. Aberrant
calcium regulation has been associated with multiple
diseases such as diabetes, hypertension, cardiovascu-
lar, Alzheimer, and cancer. Although changes in cal-
cium signalling are not required for tumor inception,
it was reported that impaired calcium signalling in
tumor cells may support cancer metastasis [Chen
et al. 2013].

Gene expression regulation in cells may be con-
trolled by TFs and non-coding RNAs (such as
miRNAs) either at the transcriptional and/or post-

transcriptional levels, thus any alterations in these reg-
ulatory compounds may affect gene expression.
Reporter TFs and miRNAs, and their target DEGs,
have been identified in the present study, in order to
discover the dynamics of the active transcriptional reg-
ulatory network in inspected diseases. It was found that
the target genes of reporter TFs and miRNAs were
involved in miscellaneous mutual signaling and regula-
tory pathways we encountered in this study (i.e., adhe-
rens junction, focal adhesion, Fc gamma R mediated
phagocytosis, and MAPK signaling pathway). Apart
from these pathways, certain major signaling pathways
were distinguished including ErbB, mTOR, p53, and
TGF-β. It was reported that members of the ErbB
family are present in a few types of cancer, up-regula-
tion of ErbBs is associated with decreasing survival, and
ErbB directed therapies are frequently targeted for can-
cer treatment [Schmukler and Pinkas-Kramarski 2015].
The mTOR signaling pathway has been frequently dys-
regulated in human cancers including ovarian, breast,
colon, renal, and head and neck, thus there is a con-
siderable concern in examining mTOR as a therapeutic
target for cancers [Pópulo et al. 2012]. TGF-β can act as
both a tumor suppressor and a promoter depending on
context. The TGF-β signaling pathway has been sug-
gested as a target for cancer therapy having shown
encouraging outcomes in varied cancers [Nagaraj and
Datta 2010]. Moreover, either internal or external stress
signals (which may cause DNA damage) may activate
the p53 pathway. According to stress signals, p53 pro-
tein is activated by post-translational modifications,
and this lead to cell cycle arrest, cellular senescence,
or apoptosis [Harris and Levine 2005]. Consequently, it
is feasible to encounter these signal transduction path-
ways with ovarian cancer as therapeutic targets.

Ovarian cancer and ovary related diseases represent
complex pathology outcomes from genetic alterations
and environmental influences. Understanding the dis-
ease pathways requires omics data from several levels
(especially, proteomics and metabolomics). However,
experimental data to analyze the biological mechanisms
of ovarian diseases are very limited, even at the tran-
scriptomic level. The systems network biomedicine
approach used here employs genome-scale biological
networks, which are reconstructed via high-throughput
datasets. Further detail awaits the analysis of the data
afforded by Next Generation approaches including
sequencing. This should improve the quality of data
employed in the network reconstruction and thus
increase the prediction accuracy of the network-based
analyses. In the present analysis, sample sizes of tran-
scriptomic datasets were limited. Although power ana-
lyses indicated the sufficiency of sample sizes for the
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employed datasets, increments in the sample sizes will
also improve the efficiency of the statistical methods,
especially in determination of differentially expressed
genes.

In conclusion, comparative and integrative analysis
of transcriptome datasets for ovarian cancer, ovarian
endometriosis, and PCOS resulted with several proteo-
mic, metabolic, and transcriptional regulatory signa-
tures for further analyses. These signatures, overall,
were associated with formation or initiation of cancer
development, and pointed out the potential tendency of
PCOS and endometriosis to tumorigenesis. Molecules
and pathways related to MAPK signaling, cell cycle, and
apoptosis were the mutual determinants in pathogen-
esis of all three diseases. This study provides signatures
which could be considered as candidates for the design
of diagnostic tools and treatment strategies for further
experimental and clinical studies. This study contribu-
ted to the molecular signatures which may be used for
screening or therapeutic purposes, and may be benefi-
cial for understanding etiopathogenesis and biological
mechanisms of ovarian diseases.

Materials and methods

A multi-stage analysis method was developed and applied
here (Figure 1). Initially, gene expression datasets were
statistically analyzed and differentially expressed genes
and their regulatory patterns were identified. Considering
DEG sets, functional enrichment studies were performed
to identify enriched pathways, annotation terms (i.e., Gene
Ontology terms), diseases, and biological processes. Then,
results were integrated with biological networks to identify
reporter biomolecules.

High-throughput gene expression datasets

To analyze the gene expression profiles of ovarian tissue
diseases (ovarian cancer, endometriosis, and PCOS), six
independently high throughput datasets (GSE7463,
GSE14407, GSE7305, GSE1615a, GSE1615b, and
GSE10946- lean samples) were downloaded from the
Gene Expression Omnibus (GEO) database [Barrett et al.
2013]. A total of 92 (46 diseased, 46 control) samples were
examined, including 21 samples from ovarian cancer and
22 non-ovarian cancer tissues, 10 diseased and 10 healthy
samples for ovarian endometriosis, and 15 diseased and 14
healthy samples for PCOS (Table 1).

Identification of differentially expressed genes

Each dataset was statistically analyzed to identify DEGs.
The raw.CEL microarray files were normalized through

computing the Robust Multi-Array Average (RMA)
expression measure [Bolstad et al. 2003] as implemen-
ted in the affy package [Gautier et al. 2004] of R/
Bioconductor platform (version Rx64 3.0.2)
[Gentleman et al. 2004]. DEGs were identified from
the normalized expression values using Linear Models
for Microarray Data (LIMMA) package [Smyth 2005].
To determine statistical significance of the DEGs,
p-value threshold was used (p<0.01), and fold changes
were taken into account to determine the regulatory
patterns of the DEGs. The required ID conversions
were obtained from Biodbnet platform [Mudunuri
et al. 2009]. Since transcriptome data employed in the
present study were obtained from various ovarian cells
and tissues, each dataset was statistically analyzed inde-
pendently; then, a unique DEG list was obtained for
each disease with multiple datasets (i.e., ovarian cancer
and PCOS) by taking the union of DEG sets derived
from each dataset.

Reconstruction of protein-protein interaction
networks and topological analysis

The previously reconstructed PPI network of Homo
sapiens, which consists of 288,033 physical interactions
between 21,052 proteins, was recruited in the present
study [Karagoz et al. 2015]. For each dataset, a PPI
subnetwork was reconstructed around DEGs, repre-
sented as undirected graphs (i.e., nodes represent pro-
teins and the edges represent interactions between the
proteins), visualized and analyzed via Cytoscape
(v2.8.3) [Smoot et al. 2011]. To determine hub proteins,
topological analyses were applied through Cyto-Hubba
plugin [Smoot et al. 2011] and the dual-metric
approach [Karagoz et al. 2015; Calimlioglu et al. 2015]
considering degree and betweenness centrality mea-
sures simultaneously was employed. The top 5% of
the proteins with the highest degree and/or between-
ness centrality in the network were presented as hub
proteins.

Determination of disease specific reporter
metabolites

The genome-scale metabolic network, which provides
information about metabolic reactions and the genes
that encode enzymes catalyzing these reactions, was
gained from the latest version of the Human
Metabolic Reaction (HMR 2.00) model which is avail-
able from Human Metabolic Atlas resource
[Mardinoglu et al. 2014]. The reporter metabolites
(around which significant gene expression changes
occur) were identified via BioMet Toolbox (v2.0) by
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using up and down-regulated DEGs of each disease
[Garcia-Albornoz et al. 2014]. P-value threshold
(p<0.05) was used to determine statistical significance.

Enrichment analyses of DEGs and reporter
metabolites

Disease, biological process, molecular function, and
pathway enrichment analyses of DEGs were performed
via DAVID’s functional annotation tool [Huang et al.
2009]. In the analyses, Genetic Association Database
[Becker et al. 2004] and KEGG [Kanehisa et al. 2014]
were preferably employed as disease and pathway data-
bases, respectively. Functional enrichment analysis for
metabolites was performed via MBRole [Chagoyen and
Pazos 2011]. Fisher’s exact test was used to evaluate the
significance of the enrichments and a p-value threshold
of p<0.05 was used for all enrichment analyses.

Determination of reporter transcription factors and
miRNAs

Reporter TFs and miRNAs were determined by using
experimentally verified TF-target gene interactions
downloaded from PAZAR database [Portales-Casamar
et al. 2009], and experimentally supported miRNA-tar-
get gene interactions downloaded from miRTarbase
(Release 4.5) [Hsu et al. 2014]. The reporter features
algorithm [Patil and Nielsen 2005] was employed and
implemented in MATLAB (R2010) [Sevimoglu and
Arga 2015]. The z-scores following a standard normal
distribution was converted to p-values, and statistically
significant (p<0.05) TFs and miRNAs were considered
to be the reporter transcriptional regulatory compo-
nents. Specific and common regulatory components in
each disease were identified and target DEGs of com-
mon reporter TFs and miRNAs were extracted from the
TF-miRNA-gene interaction network constructed in
our previous study [Calimlioglu et al. 2015]. The target
DEGs of reporter TFs and miRNAs were subjected to
pathway enrichment analyses through DAVID’s func-
tional annotation tool [Huang et al. 2009].
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