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Abstract. Let R be a commutative ring with a nonzero identity. In this study, we
present a new class of ideals lying properly between the class of n-ideals and the class of
(2,n)-ideals. A proper ideal I of R is said to be a quasi n-ideal if v/I is an n-ideal of R.
Many examples and results are given to disclose the relations between this new concept and
others that already exist, namely, the n-ideals, the quasi primary ideals, the (2,n)-ideals
and the pr-ideals. Moreover, we use the quasi n-ideals to characterize some kind of rings.
Finally, we investigate quasi n-ideals under various contexts of constructions such as direct
product, power series, idealization, and amalgamation of a ring along an ideal.
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1. INTRODUCTION

In this article, we focus only on commutative rings with a nonzero identity and
nonzero unital modules. Let R always denote such a ring and M denote such an
R-module. The principal ideal generated by ¢ € R is denoted by (a). Also the
radical of I is defined as /I := {r € R: ¥ € I for some k € N}. In particular,
V0 :={r € R: r* =0 for some k € N} is the set of all nilpotent elements of R. For
a subset S of R and an ideal I of R, we define (I : S) := {r € R: rS C I}. In
particular, we use Ann(S) instead of (0 :g S). Moreover, for any a € R and any ideal I
of R we use (I : a) and Ann(a) to denote (I :g {a}) and Ann({a}), respectively.
An element a € R is called a regular (or zerodivisor) element if Ann(a) = (0)
(or Ann(a) # (0)). The set of all regular (or zerodivisor) elements of R is denoted
by r(R) (or zd(R)).

In 2015, Mohamadian presented the notion of r-ideals in commutative rings with
a nonzero identity as follows: an ideal I of a commutative ring with identity R
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is called r-ideal (or pr-ideal) if ab € I and a is regular element implies that b € I
(or b™ € I, for some natural number n) for each a,b € R, see [9]. In 2017, the authors
introduced the concept of n-ideals of a commutative ring with a nonzero identity R
as follows: let I be a proper ideal of R. If whenever ab € I and a ¢ /0, then b € I,
we say I is an n-ideal of R, see [11]. It is clear that every n-ideal is an r-ideal since
V0 C zd(R). In [10], Tamekkante and Bouba introduced a generalization of the class
of n-ideals called (2,n)-ideals. A proper ideal I of R is said to be a (2,n)-ideal if
whenever a,b,c € R and abc € I, then ab € I or ac € v/0 or bc € v/0. They proved
that an ideal I of R is a (2, n)-ideal if and only if I is 2-absorbing primary ideal and
I C /0, see [10], Theorem 2.4.

On the other hand, the concept of quasi primary ideals in commutative rings was
introduced and investigated by Fuchs in [7]. The author called an ideal I of R as
a quasi primary ideal if v/I is a prime ideal. In [12], the notion of 2-absorbing quasi
primary ideals is introduced as follows: a proper ideal I of R is 2-absorbing quasi
primary if /I is a 2-absorbing ideal of R.

In this paper, our aim is to introduce a generalization of the concepts of n-ideals
in commutative rings with a nonzero identity. For this, firstly with Definition 2.1,
we introduce the concept of quasi n-ideals of R as follows: let I be a proper ideal
of R, if VI is an n-ideal of R, then I is said to be a quasi n-ideal of R. In addition
to giving main properties of quasi n-ideals, we give a characterization for them, see
Theorem 2.1. At this point, we observe that quasi n-ideals exist in a ring R only
when /0 is a prime ideal. On the other hand, we have the following figure with
nonreversible arrows, see Examples 2.1 and 2.2

n-ideal — quasi n-ideal — (2, n)-ideal.

Moreover, we study the rings over which every proper ideal is a quasi n-ideal. Finally,
we give an idea about quasi n-ideals of the localization of rings, the power series rings,
the trivial ring extensions and the amalgamated of rings along an ideal.

2. QUASI n-IDEALS OF COMMUTATIVE RINGS

Definition 2.1. Let R be a commutative ring with a nonzero identity and I be
a proper ideal of R. If /I is an n-ideal of R, then I is said to be a quasi n-ideal of R.

It can be easily seen that every n-ideal of a ring R is a quasi n-ideal. But the
converse is not true. For this, we can give the following example, which is a quasi
n-tdeal but not n-ideal.
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Example 2.1. Let R = Z[X,Y]/(Y*). Forx = X + (Y*) and y = Y + (Y?),
consider I = (zy,y?). It is clear that v/Og = (y). Since (v +%)y € I but x +y ¢ \/Ogr
and y ¢ I, we get that I is not an n-ideal of R. On the other hand, \/Og = (y) is
a prime ideal of R. By [11], Corollary 2.9 (i), we say 1/Og is an n-ideal. Moreover,
VI =+/0g as I C /0. Hence, VI is an n-ideal, i.e., I is a quasi n-ideal of R.

The following theorem provides necessary and sufficient conditions for a proper
ideal to be a quasi n-ideal.

Theorem 2.1. Let R be a ring and I be a proper ideal of R. Then the following
statements are equivalent:
(1) I is a quasi n-ideal.
(2) I is a quasi primary ideal and I C /0.
(3) For two ideals I, I of R, if ;1o C /I and I, N (R —+/0) # 0, then I, C V/I.

Proof. (1) = (2): Let I be a quasi n-ideal of R. Suppose that I ¢ /0, then
we can pick an element a € I — v/0 and we consider a-1 € I C /I. As /I is an
n-ideal and a ¢ /0, we must have 1 € v/I, a contradiction. Thus, I C /0 and hence
VI=+0isa prime ideal.

(2) = (3): Let I; I, € v/I and I, N (R — +/0) # 0 for two ideals I, I of R. There
exists a € I; — /0. Then we say als C V1, ie., Iy C (/I : a). By assumption, we
have I, € (VI : a) = VI, as needed.

(3) = (1): Choose a,b € R such that ab € v/I and a ¢ /0. Consider I; = (a) and
I, = (b). By our hypothesis, (b) C /I, that is, b € /I O

Corollary 2.1. Let R be a ring.
(1) (0) is a quasi n-ideal of R if and only if \/0 is a prime ideal of R.
(2) Let R be a reduced ring. Then R is an integral domain if and only if (0) is the
only quasi n-ideal of R.

Proof. (1) It is clear.

(2) Suppose that R is an integral domain, then as v/0 = (0) is prime, (0) is a quasi
n-ideal by (1). On the other hand, if I is a quasi n-ideal of R, then I C /0 = (0) by
Theorem 2.1. For the converse, one can see that if (0) is a quasi n-ideal, then R is

an integral domain. O

Remark 2.1. It should not be surprising that a ring R does not have a quasi
n-ideal. For instance, R = Zg has no quasi n-ideals. Indeed, let I be a quasi n-ideal.
By Theorem 2.1, we say I € V0 = (0), so I = (0). Moreover, since 2-3 € V0, 2 ¢ V0
and 3 ¢ V0, we conclude (0) is not a quasi n-ideal.

As an immediate consequence of Theorem 2.1, we give a characterization of rings
that admit quasi n-ideals.
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Corollary 2.2. Let R be a ring. There is a quasi n-ideal of R if and only if v/0
is a prime ideal of R.

The following proposition shows that the class of quasi n-ideals is a subclass of
(2, n)-ideals.

Proposition 2.1. Every quasi n-ideal of a ring R is a (2,n)-ideal.

Proof. Let I be a quasi n-ideal, then v/I = /0 is a prime. By Theorem 2.8
of [2], I is a 2-absorbing primary ideal and hence I is a (2,n)-ideal of R by Theo-
rem 2.4 of [10], as needed. O

The following example proves that the converse of the previous proposition is not

true, in general.

Example 2.2. Consider the ideal I := (0) of the ring R = Zg. Then, by Exam-
ple 2.3 of [10], I is a (2,n)-ideal. However, R has no quasi n-ideals by Remark 2.1.

Note that similarly to the concept of quasi n-ideals, we can define the concept
of “quasi r-ideals” of R as follows: if /I is an r-ideal, we say I is a quasi r-ideal
of R. On the other hand, Mohamadian proved that I is a pr-ideal if and only if /T
is an r-ideal, see [9], Proposition 2.16. Thus, we conclude the two concepts, quasi
r-ideals and pr-ideals, are identical. In this study for this concept, we will use “quasi
r-ideals“ to catch the similarity of the concept of “quasi n-ideals”.

Proposition 2.2. Let I be a proper ideal of R. If I is a quasi n-ideal, then I is
a quasi r-ideal.

Proof. Suppose that I is a quasi n-ideal, so v/I is an n-ideal. Since every
n-ideal is an r-ideal, V/T is also an r-ideal. It is done. ([

As /0 C zd(R), one can easily show that if (0) is a primary ideal of R, then v/0 =
zd(R). Thus, the n-ideals and r-ideals are identical in any commutative ring such that
(0) is primary. By the help of the same argument, one can see the following remark.

Remark 2.2. The quasi n-ideals and quasi r-ideals are identical in any commu-
tative ring, where (0) is a primary ideal.

Proposition 2.3. The intersection of any family of quasi n-ideals of R is a quasi
n-ideal of R.

Proof. Let {I,}aeca be a family of quasi n-ideals of R. We will show that

N I. is an n-ideal of R. As I, is a quasi n-ideal of R, we know /I, is an
acA

n-ideal of R. Thus, | () Io = () VI, implies that | () I, is an n-ideal by [11],
aEA acA acA
Proposition 2.4. (I
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Proposition 2.4. Let R be a ring. If I is a proper ideal of R and P is a prime
ideal of R such that INP is a quasi n-ideal, then either I is a quasi n-ideal or P = /0.

Proof. If I C P, then I = I NP is a quasi n-ideal. Now, we suppose that
I ¢ P and take a,b € R with ab € P and a ¢ /0. By hypothesis, we can pick an
element x € I — P, hence abr € I N P. The fact that I N P is a quasi n-ideal and
a ¢ /0 implies that bz € VINP. Thus, b € P and so P is an n-ideal of R, which
shows that P = /0. This completes the proof. O

Theorem 2.2. Let R be a ring and I, ..., 1, be ideals of R, where n > 2. If I,
n

and I; are co-primes for each i # j, then () Iy is not a quasi-n-ideal of R.
k=1

Proof. Suppose that () I is a quasi-n-ideal. We will prove that I; is a quasi
k=1
n-ideal for each j. Let a,b € R such that ab € \/Ij and a ¢ /0. Since I; and I, are

co-primes for each k # j, we have that I; and () Iy must be co-primes. Then there
k£ n
exist x € I; and y € () I such that 1 = z +y. Thus, aby € \/ﬂ I, which implies
ktj k=1

n

that b™y™ € () I for a positive integer m. So, b"y™ =1 = b™y™ 1y + b™y™ € I;.
k=1

By induction, we can prove that b € \/ I;. It follows that I; is a quasi n-ideal. By

Theorem 2.1, we obtain 1 € /0, a desired contradiction. O

Proposition 2.5. Let R be a ring and S be a nonempty subset of R. If I is
a quasi n-ideal of R with S ¢ VI, then (I : S) is a quasi n-ideal of R.

Proof. It suffices to show that v/I C \/(I :5) C (\/I :9) = V1. This, in turn,
follows from the fact that I is a quasi n-ideal of R and S ¢ /0, as needed. ]

Let R be a ring. We call a quasi n-ideal I of R a maximal quasi n-ideal if there
is no quasi n-ideal which contains I properly. We observe that /0 is the unique

maximal quasi n-ideal in a ring R.

Theorem 2.3. Let R be aring. If I is a maximal quasi n-ideal of R, then I = /0.

Proof. Let I beamaximal quasi n-ideal. We claim that I is an n-ideal. Choose
a,b € R such that ab € T and a ¢ /0. Then, by Proposition 2.5, (I : a) is a quasi
n-ideal of R. Since [ is a maximal quasi n-ideal of R, it must be (I : a) = I, hence
b € I. Consequently, I is a maximal n-ideal, that is, I = /0 by [11], Theorem 2.11.

O

Proposition 2.6. Let R be a zero dimensional ring. Then R admits a quasi
n-ideal if and only if (R,+/0) is a local ring.
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Proof. Let R be a zero dimensional ring which admits a quasi n-ideal. Then,
by Theorem 2.2, /0 is a prime ideal. Moreover, if P is a prime ideal of R, then
v/0 = P by maximality of /0. Hence, R is a local ring. For the converse, it can be
easily seen that if (R,+/0) is a local ring, then /0 is the unique prime ideal of R.
Thus, every proper ideal of R is an n-ideal (so a quasi n-ideal), as desired. 0

Corollary 2.3. Let R be a ring. Then the following statements are equivalent:
(1) R is a field.
(2) R is a Boolean ring and (0) is a quasi n-ideal.
(3) R is a von Neumann regular ring and (0) is a quasi n-ideal.

Proof. (1)= (2) and (2) = (3) are clear.

(3) = (1): Assume that R is a von Neumann regular ring and (0) is a quasi
n-ideal. So, R is a reduced ring and is zero dimensional. Hence, R is a field by
Proposition 2.6. U

Corollary 2.4 ([11], Proposition 3.1). Let m be a positive integer. Then the
following statements are equivalent:
(1) Z,, has a quasi n-ideal.
(2) Z,, has an n-ideal.
(3) m = p* for some k € 7%, where p is a prime number.

According to [3], a ring R is called an UN-ring if every nonunit element a of R is
a product of a unit and a nilpotent element.

Proposition 2.7. Let R be a ring. Then the following statements are equivalent:
(1) R is an UN-ring.
(2) Every proper principal ideal of R is a quasi n-ideal.
(3) Every proper ideal of R is a quasi n-ideal.

Proof. (1)= (2) follows from Proposition 2.25 of [11].

(2) = (3): Let I be a proper ideal of R. Assume that ab € I for some elements
a € R—+/0and b € R. Then, by assumption, b € \/(ab) C V/I. Thus, I is a quasi
n-ideal.

(3) = (1): Let P be a prime ideal of R, then P is a quasi n-ideal and so P = /0,
which implies that /0 is the unique prime ideal of R. It follows that R is an UN-ring
by [3], Proposition 2 (3). O

Theorem 2.4. Let I,1y,15,...,1I,, beideals of R such that I C I; Ul U...UI,,.
If I is a quasi n-ideal and the others have nonnilpotent elements such that I ¢ |J I;,
then I C \/I,. 7
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Proof. Without loss of generality, let ¢ = 1. By our hypothesis, I € I,U...UI,,.
Thus, there sz elbutz ¢ hU. U I,,. This means that * € I;. Now, we

claim I N ﬂ I, € I. Choose o € I N ﬂ Ij.. Note that = ¢ Ik and o € I for
k=2 k=2
k = 2,...,m. This implies z + o ¢ Iy. Thus, z + « € I — U , which implies
j=2

x + a € I;. Then we conlclude a € I;. On the other hand, by Theorem 2.2, v/0
is a prime ideal of R. Hence, R — /0 is a multiplicatively closed subset of R, so
the product of nonnilpotent elements is a nonnilpotent element. This means that

m m m
[T I N (R — /0) # 0. Now, note that I(H Ik) cin (H Ik) C I . Consider
k=2 k=2 k=2

m m
I( I1 Ik> C VI and [ I N (R —+/0) # 0. By Theorem 2.1, we conclude I C \/I;.

k=2 k=2
([

Proposition 2.8. Let R be a ring and J be an ideal of R such that J N
(R —+/0) # 0. Then:
(1) IfI; and I are two quasi n-ideals of R such that /I J = \/IsJ, then /I = \/I5.
(2) IfV1J is a quasi n-ideal of R, then \/I.J = \/I.

Proof. (1) Consider /I1J C /I5. By Theorem 2.1, v/I; C /I>. Similarly, we
conclude /Iy C /1.

(2) By the assumption, VIJ is a quasi n-ideal and also consider VIJ C \/ VIJ .
By Theorem 2.1, we have /I C \/\/IJ. As \/\/IJ = \/\/Iﬁ VJ = V/IJ, we obtain
VI CV/1J, as required. Il

Theorem 2.5. Let f: R — S be a homomorphism. Then:
(1) Suppose f is an epimorphism. If I is a quasi n-ideal of R such that Ker(f) C I,
then f(I) is a quasi n-ideal of S.
(2) Suppose f is a monomorphism. If J is a quasi n-ideal of S, then f~'(J) is
a quasi n-ideal of S.

Proof. (1) Choose x,y € S such that azy € \/f and z ¢ 1/0g. Then there
are a,b € R with x = f(a) and y = f(b). It is clear that f(ab) € \/f(I). Also,
Ker(f) C I implies ab € /I. Note that a ¢ v/Or as = ¢ /0s. Thus, as I is a quasi
n-ideal, we conclude b € VI, that is, y € \/f(I)

(2) Take a,b € R with ab € \/f~1(J) and a ¢ \/Or. Then there is k € N such that
(ab)* € f~1(J), that is, f(ab)* € J. On the other hand, as f is a monomorphism,
a ¢ +/0 means f(a) ¢ v/0s. Then we get f(a)* ¢ \/0s. Thus, by hypothesis, we
obtain f(b)* € J, i.e., b€ \/ffl(J), which completes the proof. O
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Corollary 2.5. Let I and J be two ideals of R such that J C I.
(1) If I is a quasi n-ideal of R, then I/J is a quasi n-ideal of R/J.
(2) IfI/J is a quasi n-ideal of R/J and J C /0, then I is a quasi n-ideal of R.
(3) If1/J is a quasi n-ideal of R/J and J is a quasi n-ideal of R, then I is a quasi
n-ideal of R.

Proof. (1) Let 7: R — R/J be the natural homomorphism. Since Ker(f) =
J C I, by Theorem 2.5, we say w(I) = I/J is a quasi n-ideal of R//J.

(2) Choose a,b € R with ab € /T and a ¢ /Og. This implies that (a+J)(b+J) €
VI/)J = \/I/J. Also, note that a + J ¢ \/OR/J, otherwise it would contradict with
a ¢ +/0g since J C +/Or. Hence, b+ .J € \/I/J7 so b € v/I. Consequently, T is a quasi
n-ideal of R.

(3) Since J is a quasi n-ideal, by Theorem 2.1, J C y/0g. Thus, with item (2), it
is done. O

Corollary 2.6. Let S be a subring of R. If I is a quasi n-ideal of R such that
S ¢ I, then INS is a quasi n-ideal of S.

Proof. Leti: S — R be the injection homomorphism. Clearly, i ~1(I) = INS.
By Theorem 2.5, I N S is a quasi n-ideal of S. ([

Proposition 2.9. Let R be a ring and S be a multiplicatively closed subset of R.
Then the following statements hold:
(1) If I is a quasi n-ideal of R, then S~'I is a quasi n-ideal of S™'R.
(2) Suppose that S = r(R). If J is a quasi n-ideal of S™'R, then J¢ is a quasi
n-ideal of R.

Proof. (1) Choose a/s,b/t € S~'R such that (a/s)(b/t) € VS—1 = S~I/I
and a/s ¢ \/0g-1z. Then we have uab € /I for some u € S. Also, a/s ¢ /Og-1p
implies that a ¢ +/Og. Since I is a quasi n-ideal of R, we conclude ub € VI, ie.,
b/t = ub/(ut) € STVI.

(2) Take a,b € R with ab € v/J¢ and a ¢ \/Ogr. Then (ab)* € J° for some k € N.
Consider (a/1)*(b/1)* € J. Now, we claim (a/1)¥ ¢ \/0g-1x. Let (a/1)* € \/0g-15.
There exists ¢t € N such that (a/1)¥" = 0g-1z. Thus, for some u € S = r(R), we
have ua*® = Og. This implies that a** € Ann(u) = Og, i.e., a € y/Og. This gives
us a contradiction. Thus, as J is a quasi n-ideal of S™'R, we conclude (b/1)* € J.
Consequently, b € v/Je. O

Theorem 2.6. Let R and S be two commutative rings. Then R x S has no quasi
n-ideals.
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Proof. Let I x J be a quasi n-ideal of R x S. Then v/I x J = VI x +/Jis an
n-ideal of R x S. But this result contradicts with Proposition 2.26 of [11]. O

Proposition 2.10. Let R be a ring and I be an ideal. Then:
(1) R has a quasi n-ideal if and only if R[X] has a quasi n-ideal.
(2) If I[X] is a quasi n-ideal of R[X], then I is a quasi n-ideal of R.
(3) (I,X) is never a quasi n-ideal of R[X].

Proof. (1) Combine Theorem 2.2 with Lemma 3.6 of [10].

(2) Assume that I[X] is a quasi n-ideal of R[X]. Then, by Corollary 2.6, I =
I[X]N R is a quasi n-ideal of R.

(3) It follows from the fact that \/(I, X) VAUSE O

Recall that an ideal I of a ring is said to be a strong finite type (or an SFT-ideal)
if there exist a natural number k£ and a finitely generated ideal J C I such that
xF € J for each z € I.

Proposition 2.11. Let R be a ring and I be an ideal of R. Then the following
statements hold:
(1) If R[[X]] admits a quasi n-ideal, then R admits a quasi n-ideal. The converse
holds provided that +/0r is an SF'T-ideal.
(2) IfI[[X]] is a quasi n-ideal of R[[X]], then I[X] is a quasi n-ideal of R[X] (so I
is a quasi n-ideal of R).

Proof. (1)If R[[X]] has a quasi n-ideal, then \/Or = /Og(x] N R is an n-ideal
of R and so 1/0Or is a prime ideal of R. For the converse, we assume that /Or
is an SFT-ideal. Then, by [8], Corollary 2.4, /Og(x)) = vOr[[X]]. On the other
hand, since R admits a quasi n-ideal, then \/ Og(x]] is a prime ideal, which implies
that R[[X]] admits a quasi n-ideal.

(2) Suppose that I[[X]] is a quasi n-ideal of R[[X]], then I[X]| = I[[X]] N R[X] is
a quasi n-ideal by Corollary 2.6. Hence, I is a quasi n-ideal. 0

Let R be a commutative ring with a nonzero identity and M be an R-module.
Then the idealization R(+)M = {(a,m): a € R, m € M} is a commutative ring
with componentwise addition and multiplication (a,m)(b,n) = (ab, an+bm) for each
a,b € Rand m,n € M. In addition, if I is an ideal of R and N is a submodule of M,
then I(+)N is an ideal of R(4+)M if and ounly if IM C N, see [1].

Theorem 2.7. Let R be a ring and M be an R-module.
(1) A proper ideal J of R(+)M is a quasi n-ideal if and only if Jg is a quasi n-ideal
of R, where Jp = {r € R: (r,m) € J for some m € M}.
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(2) I is a quasi n-ideal of R if and only if I(+)N is a quasi n-ideal of R(+)M for
each submodule N of M such that IM C N.

Proof. (1) Let J be a proper ideal of R(+)M. It is well known from [1],
Theorem 3.2 (3) that v/J = /Jr(+)M, where Jg = {r € R: (r,m) € J for some
m € M}. On the other hand, by Theorem 2.1, J is a quasi n-ideal if and only if
VJIr(H)M = v/O(+)M is a prime ideal if and only if Jr is a quasi n-ideal of R. Tt
is done.

(2) It follows from (1). O

The following is an example of a quasi n-ideal that is not an n-ideal.

Example 2.3. Let R = Z and M = 7,4, where p and ¢ are prime numbers.
Then, the zero ideal of R(+)M is a quasi n-ideal which is not an n-ideal. Indeed,
VOr(+)m = 0(+)M is prime. However, (p,0)(0,q) € (0,0) but (p,0) ¢ \/Or(1)nm
and (0,q) ¢ (0,0).

Let R and S be two rings, J be an ideal of S and f: R — S be a ring homomor-
phism. In this setting, we can consider the subring of R x S

Ruo<! J={(r,f(r)+j): r€ Rand j € J}

called the amalgamation of R with S along J with respect to f. This construction has
been first indroduced and studied by D’Anna, Finocchiaro, and Fontana in [6], [4].
In particular, if I is an ideal of R and idg: R — R is the identity homomorphism
on R, then Ri<xJ = Ro<i® J = {(r,r +j): r € Rand j € J} is the amalgamated
duplication of R along J (introduced and studied by D’Anna and Fontana in [5]).
For all ideals I of R and ideals K of S, set:

I J={(r,f(r)+4): r€TandjeJ}
K' ={(r,f()+j): r€R, jeJand f(r)+j € K}.

Theorem 2.8. Let R and S be a pair of rings, J be an ideal of S and f: R — S
be a ring homomorphism. Let I be an ideal of R and K be an ideal of S. The
following statements hold:

(1) If I </ J is a quasi n-ideal (or n-ideal) of R >/ .J, then I is a quasi n-ideal
(or n-ideal) of R. The converse is true if J C /0.

(2) Assume that f is an epimorphism. Then the fact that K / is a quasi n-ideal
(or n-ideal) of R >/ J implies that K is a quasi n-ideal (or n-ideal) of S. The
converse holds provided that f~1(J) C \/0g.
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Proof. (1) Assume that I </ J is a quasi n-ideal of R >/ J. Let
a,b € R such that ab € VI and a ¢ +/Og. Then (a, f(a))(b, f(b)) € VIf J
with (a, f(a)) ¢ v/Opsats. This implies that (b, f(b)) € VI >/ J and hence b € /1.
Now, we will prove the converse under additional hypothesis that J C 1/0s. Suppose
that (a, f(a) + j)(b, f(b) + j') € VIl J for some (a, f(a) + j) ¢ vOpsarys and
(b, f(b) +4') € R<f J. By hypothesis, we must have a ¢ \/Or. Therefore, b € /T
and thus (b, f(b) + j') € VI </ J. Similarly, one can prove that if I o/ .J is an
n-ideal of R </ J, then I is an n-ideal of R, and the converse is true if J C 1/0g.

(2) Let z,y € S with 2 = f(a) and y = f(b). Suppose that zy € VK and = ¢ /0.
So, (a, f(a))(b, f(b)) € VK and (a, f(a)) & v/Opsar - Since K7 is a quasi n-ideal, we
then have (b, f(b)) € VK and so y = f(b) € VK. For the converse, suppose that K
is a quasi n-ideal of S and f~1(J) C \/Og. Let (a, f(a) +7), (b, f(b) + j') € R/ J
such that (a, f(a) + j)(b, f(b) + ') € VK/ and (a, f(a) + j) ¢ /Opsars. Then
(f(a)+5)(f(b)+35") € VK. The fact that (a, f(a)+7) & v/Orwar s ensures that f(a)+
j ¢ v/0s. Suppose, on the contrary, that f(a) +j € v/0s. As f is an epimorphism,
then there exists ¢ € R such that f(c) = j. It is obvious that ¢ € y/Or and hence
j € v/0g, which proves that a™ € Ker(f) for a positive integer m. Moreover, a € \/Og
since f~1(J) C \/Og, that is, (a, f(a) + j) € \/Opwss, a contradiction. We conclude
that (f(b) + j') € VK since K is a quasi n-ideal of S. Thus, K/ is a quasi n-ideal
of R </ J. Similarly, one can prove that if K7 is an n-ideal of R >/ J, then K is
an n-ideal of S, and the converse is true in the case, where f~!(J) C \/Og. This
completes the proof. O

Corollary 2.7. Let R be a ring and let I and J be ideals of R.
(1) If I < J is a quasi n-ideal (or n-ideal) of R < J, then I is a quasi n-ideal
(or n-ideal) of R. The converse is true if J C \/0g.
(2) If I .={(a,a+1i): a € R, j€Janda+j€ I} is a quasi n-ideal (or n-ideal)
of R <1 J, then I is a quasi n-ideal (or n-ideal) of R. The converse is true if
J C +/0xg.

The following example shows that the converse of Theorem 2.8 (1) fails if one
deletes the hypothesis that J C 1/0s.

Example 2.4. Let R = Z(+)Z,q, where p and ¢ are prime numbers, and let
J = pZ(+)Zpq. 1t is clear that I = 0(+)Z,, is an n-ideal (and so is a quasi n-ideal)
of R. However, I 1 J is not a quasi n-ideal (and so is not an n-ideal). Indeed,
((0.T), (. T)((1,0), (1,0)) = ((0,1), (1)) € I 51 J. But ((0,1),(p, 1)) ¢ vOpoas
and ((1,0),(1,0)) ¢ VI < J.

In the following example, we prove that the condition f~1(.J) C /Or cannot be
discarded in the proof of the converse of Theorem 2.8 (2).
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Example 2.5. Let R = Z(+)Z,q, where p and ¢ are prime numbers, S = Z, and
let J = pZ. Counsider the canonical epimorphism f: R — S defined by f(r,m) =r.
Note that f~(J) = pZ(+)Zpy € +/Or. On the other hand, K = (0) is an n-ideal
of S. However, K7 is not a quasi n-ideal of R </ J because ((p,0),0)((1,0),1) € K/,
((p70)70) ¢ \/ORlxlfJ and ((176)7 1) g \/Kf'
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