ON QUASI n-IDEALS OF COMMUTATIVE RINGS

Adam Anebri, Najib Mahdou, Fez, Emel Aslankarayiğit Uğurlu, Istanbul

Received September 29, 2021. Published online July 28, 2022.

Abstract

Let R be a commutative ring with a nonzero identity. In this study, we present a new class of ideals lying properly between the class of n-ideals and the class of $(2, n)$-ideals. A proper ideal I of R is said to be a quasi n-ideal if \sqrt{I} is an n-ideal of R. Many examples and results are given to disclose the relations between this new concept and others that already exist, namely, the n-ideals, the quasi primary ideals, the $(2, n)$-ideals and the $p r$-ideals. Moreover, we use the quasi n-ideals to characterize some kind of rings. Finally, we investigate quasi n-ideals under various contexts of constructions such as direct product, power series, idealization, and amalgamation of a ring along an ideal.

Keywords: n-ideal; quasi n-ideal; ($2, n$)-ideal
MSC 2020: 13A15, 13A18

1. Introduction

In this article, we focus only on commutative rings with a nonzero identity and nonzero unital modules. Let R always denote such a ring and M denote such an R-module. The principal ideal generated by $a \in R$ is denoted by (a). Also the radical of I is defined as $\sqrt{I}:=\left\{r \in R: r^{k} \in I\right.$ for some $\left.k \in \mathbb{N}\right\}$. In particular, $\sqrt{0}:=\left\{r \in R: r^{k}=0\right.$ for some $\left.k \in \mathbb{N}\right\}$ is the set of all nilpotent elements of R. For a subset S of R and an ideal I of R, we define $\left(I:_{R} S\right):=\{r \in R: r S \subseteq I\}$. In particular, we use $\operatorname{Ann}(S)$ instead of $\left(0:_{R} S\right)$. Moreover, for any $a \in R$ and any ideal I of R we use $(I: a)$ and $\operatorname{Ann}(a)$ to denote $\left(I:_{R}\{a\}\right)$ and $\operatorname{Ann}(\{a\})$, respectively. An element $a \in R$ is called a regular (or zerodivisor) element if $\operatorname{Ann}(a)=(0)$ (or $\operatorname{Ann}(a) \neq(0)$). The set of all regular (or zerodivisor) elements of R is denoted by $r(R)($ or $\mathrm{zd}(R))$.

In 2015, Mohamadian presented the notion of r-ideals in commutative rings with a nonzero identity as follows: an ideal I of a commutative ring with identity R
is called r-ideal (or $p r$-ideal) if $a b \in I$ and a is regular element implies that $b \in I$ (or $b^{n} \in I$, for some natural number n) for each $a, b \in R$, see [9]. In 2017, the authors introduced the concept of n-ideals of a commutative ring with a nonzero identity R as follows: let I be a proper ideal of R. If whenever $a b \in I$ and $a \notin \sqrt{0}$, then $b \in I$, we say I is an n-ideal of R, see [11]. It is clear that every n-ideal is an r-ideal since $\sqrt{0} \subseteq \operatorname{zd}(R)$. In [10], Tamekkante and Bouba introduced a generalization of the class of n-ideals called ($2, n$)-ideals. A proper ideal I of R is said to be a $(2, n)$-ideal if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{0}$ or $b c \in \sqrt{0}$. They proved that an ideal I of R is a $(2, n)$-ideal if and only if I is 2 -absorbing primary ideal and $I \subseteq \sqrt{0}$, see [10], Theorem 2.4.

On the other hand, the concept of quasi primary ideals in commutative rings was introduced and investigated by Fuchs in [7]. The author called an ideal I of R as a quasi primary ideal if \sqrt{I} is a prime ideal. In [12], the notion of 2 -absorbing quasi primary ideals is introduced as follows: a proper ideal I of R is 2 -absorbing quasi primary if \sqrt{I} is a 2 -absorbing ideal of R.

In this paper, our aim is to introduce a generalization of the concepts of n-ideals in commutative rings with a nonzero identity. For this, firstly with Definition 2.1, we introduce the concept of quasi n-ideals of R as follows: let I be a proper ideal of R, if \sqrt{I} is an n-ideal of R, then I is said to be a quasi n-ideal of R. In addition to giving main properties of quasi n-ideals, we give a characterization for them, see Theorem 2.1. At this point, we observe that quasi n-ideals exist in a ring R only when $\sqrt{0}$ is a prime ideal. On the other hand, we have the following figure with nonreversible arrows, see Examples 2.1 and 2.2

$$
n \text {-ideal } \rightarrow \text { quasi } n \text {-ideal } \rightarrow(2, n) \text {-ideal. }
$$

Moreover, we study the rings over which every proper ideal is a quasi n-ideal. Finally, we give an idea about quasi n-ideals of the localization of rings, the power series rings, the trivial ring extensions and the amalgamated of rings along an ideal.

2. Quasi n-IDeals of commutative rings

Definition 2.1. Let R be a commutative ring with a nonzero identity and I be a proper ideal of R. If \sqrt{I} is an n-ideal of R, then I is said to be a quasi n-ideal of R.

It can be easily seen that every n-ideal of a ring R is a quasi n-ideal. But the converse is not true. For this, we can give the following example, which is a quasi n-ideal but not n-ideal.

Example 2.1. Let $R=\mathbb{Z}[X, Y] /\left(Y^{4}\right)$. For $x=X+\left(Y^{4}\right)$ and $y=Y+\left(Y^{4}\right)$, consider $I=\left(x y, y^{2}\right)$. It is clear that $\sqrt{0_{R}}=(y)$. Since $(x+y) y \in I$ but $x+y \notin \sqrt{0_{R}}$ and $y \notin I$, we get that I is not an n-ideal of R. On the other hand, $\sqrt{0_{R}}=(y)$ is a prime ideal of R. By [11], Corollary 2.9 (i), we say $\sqrt{0_{R}}$ is an n-ideal. Moreover, $\sqrt{I}=\sqrt{0_{R}}$ as $I \subseteq \sqrt{0_{R}}$. Hence, \sqrt{I} is an n-ideal, i.e., I is a quasi n-ideal of R.

The following theorem provides necessary and sufficient conditions for a proper ideal to be a quasi n-ideal.

Theorem 2.1. Let R be a ring and I be a proper ideal of R. Then the following statements are equivalent:
(1) I is a quasi n-ideal.
(2) I is a quasi primary ideal and $I \subseteq \sqrt{0}$.
(3) For two ideals I_{1}, I_{2} of R, if $I_{1} I_{2} \subseteq \sqrt{I}$ and $I_{1} \cap(R-\sqrt{0}) \neq \emptyset$, then $I_{2} \subseteq \sqrt{I}$.

Proof. $\quad(1) \Rightarrow(2)$: Let I be a quasi n-ideal of R. Suppose that $I \nsubseteq \sqrt{0}$, then we can pick an element $a \in I-\sqrt{0}$ and we consider $a \cdot 1 \in I \subseteq \sqrt{I}$. As \sqrt{I} is an n-ideal and $a \notin \sqrt{0}$, we must have $1 \in \sqrt{I}$, a contradiction. Thus, $I \subseteq \sqrt{0}$ and hence $\sqrt{I}=\sqrt{0}$ is a prime ideal.
$(2) \Rightarrow(3)$: Let $I_{1} I_{2} \subseteq \sqrt{I}$ and $I_{1} \cap(R-\sqrt{0}) \neq \emptyset$ for two ideals I_{1}, I_{2} of R. There exists $a \in I_{1}-\sqrt{0}$. Then we say $a I_{2} \subseteq \sqrt{I}$, i.e., $I_{2} \subseteq(\sqrt{I}: a)$. By assumption, we have $I_{2} \subseteq(\sqrt{I}: a)=\sqrt{I}$, as needed.
$(3) \Rightarrow(1)$: Choose $a, b \in R$ such that $a b \in \sqrt{I}$ and $a \notin \sqrt{0}$. Consider $I_{1}=(a)$ and $I_{2}=(b)$. By our hypothesis, $(b) \subseteq \sqrt{I}$, that is, $b \in \sqrt{I}$.

Corollary 2.1. Let R be a ring.
(1) (0) is a quasi n-ideal of R if and only if $\sqrt{0}$ is a prime ideal of R.
(2) Let R be a reduced ring. Then R is an integral domain if and only if (0) is the only quasi n-ideal of R.

Proof. (1) It is clear.
(2) Suppose that R is an integral domain, then as $\sqrt{0}=(0)$ is prime, (0$)$ is a quasi n-ideal by (1). On the other hand, if I is a quasi n-ideal of R, then $I \subseteq \sqrt{0}=(0)$ by Theorem 2.1. For the converse, one can see that if (0) is a quasi n-ideal, then R is an integral domain.

Remark 2.1. It should not be surprising that a ring R does not have a quasi n-ideal. For instance, $R=\mathbb{Z}_{6}$ has no quasi n-ideals. Indeed, let I be a quasi n-ideal. By Theorem 2.1, we say $I \subseteq \sqrt{\overline{0}}=(\overline{0})$, so $I=(\overline{0})$. Moreover, since $\overline{2} \cdot \overline{3} \in \sqrt{\overline{0}}, \overline{2} \notin \sqrt{\overline{0}}$ and $\overline{3} \notin \sqrt{0}$, we conclude $(\overline{0})$ is not a quasi n-ideal.

As an immediate consequence of Theorem 2.1, we give a characterization of rings that admit quasi n-ideals.

Corollary 2.2. Let R be a ring. There is a quasi n-ideal of R if and only if $\sqrt{0}$ is a prime ideal of R.

The following proposition shows that the class of quasi n-ideals is a subclass of ($2, n$)-ideals.

Proposition 2.1. Every quasi n-ideal of a ring R is a $(2, n)$-ideal.
Proof. Let I be a quasi n-ideal, then $\sqrt{I}=\sqrt{0}$ is a prime. By Theorem 2.8 of [2], I is a 2 -absorbing primary ideal and hence I is a $(2, n)$-ideal of R by Theorem 2.4 of [10], as needed.

The following example proves that the converse of the previous proposition is not true, in general.

Example 2.2. Consider the ideal $I:=(\overline{0})$ of the $\operatorname{ring} R=\mathbb{Z}_{6}$. Then, by Example 2.3 of [10], I is a $(2, n)$-ideal. However, R has no quasi n-ideals by Remark 2.1.

Note that similarly to the concept of quasi n-ideals, we can define the concept of "quasi r-ideals" of R as follows: if \sqrt{I} is an r-ideal, we say I is a quasi r-ideal of R. On the other hand, Mohamadian proved that I is a $p r$-ideal if and only if \sqrt{I} is an r-ideal, see [9], Proposition 2.16. Thus, we conclude the two concepts, quasi r-ideals and $p r$-ideals, are identical. In this study for this concept, we will use "quasi r-ideals" to catch the similarity of the concept of "quasi n-ideals".

Proposition 2.2. Let I be a proper ideal of R. If I is a quasi n-ideal, then I is a quasi r-ideal.

Proof. Suppose that I is a quasi n-ideal, so \sqrt{I} is an n-ideal. Since every n-ideal is an r-ideal, \sqrt{I} is also an r-ideal. It is done.

As $\sqrt{0} \subseteq \operatorname{zd}(R)$, one can easily show that if (0) is a primary ideal of R, then $\sqrt{0}=$ $\operatorname{zd}(R)$. Thus, the n-ideals and r-ideals are identical in any commutative ring such that (0) is primary. By the help of the same argument, one can see the following remark.

Remark 2.2. The quasi n-ideals and quasi r-ideals are identical in any commutative ring, where (0) is a primary ideal.

Proposition 2.3. The intersection of any family of quasi n-ideals of R is a quasi n-ideal of R.

Proof. Let $\left\{I_{\alpha}\right\}_{\alpha \in \Delta}$ be a family of quasi n-ideals of R. We will show that $\sqrt{\bigcap_{\alpha \in \Delta} I_{\alpha}}$ is an n-ideal of R. As I_{α} is a quasi n-ideal of R, we know $\sqrt{I_{\alpha}}$ is an n-ideal of R. Thus, $\sqrt{\bigcap_{\alpha \in \Delta} I_{\alpha}}=\bigcap_{\alpha \in \Delta} \sqrt{I_{\alpha}}$ implies that $\sqrt{\bigcap_{\alpha \in \Delta} I_{\alpha}}$ is an n-ideal by [11], Proposition 2.4.

Proposition 2.4. Let R be a ring. If I is a proper ideal of R and P is a prime ideal of R such that $I \cap P$ is a quasi n-ideal, then either I is a quasi n-ideal or $P=\sqrt{0}$.

Proof. If $I \subseteq P$, then $I=I \cap P$ is a quasi n-ideal. Now, we suppose that $I \nsubseteq P$ and take $a, b \in R$ with $a b \in P$ and $a \notin \sqrt{0}$. By hypothesis, we can pick an element $x \in I-P$, hence $a b x \in I \cap P$. The fact that $I \cap P$ is a quasi n-ideal and $a \notin \sqrt{0}$ implies that $b x \in \sqrt{I \cap P}$. Thus, $b \in P$ and so P is an n-ideal of R, which shows that $P=\sqrt{0}$. This completes the proof.

Theorem 2.2. Let R be a ring and I_{1}, \ldots, I_{n} be ideals of R, where $n \geqslant 2$. If I_{i} and I_{j} are co-primes for each $i \neq j$, then $\bigcap_{k=1}^{n} I_{k}$ is not a quasi- n-ideal of R.

Proof. Suppose that $\bigcap_{k=1}^{n} I_{k}$ is a quasi- n-ideal. We will prove that I_{j} is a quasi n-ideal for each j. Let $a, b \in R$ such that $a b \in \sqrt{I_{j}}$ and $a \notin \sqrt{0}$. Since I_{j} and I_{k} are co-primes for each $k \neq j$, we have that I_{j} and $\bigcap_{k \neq j} I_{k}$ must be co-primes. Then there exist $x \in I_{j}$ and $y \in \bigcap_{k \neq j} I_{k}$ such that $1=x+y$. Thus, aby $\in \sqrt{\bigcap_{k=1}^{n} I_{k}}$, which implies that $b^{m} y^{m} \in \bigcap_{k=1}^{n} I_{k}$ for a positive integer m. So, $b^{m} y^{m-1}=b^{m} y^{m-1} x+b^{m} y^{m} \in I_{j}$. By induction, we can prove that $b \in \sqrt{I_{j}}$. It follows that I_{j} is a quasi n-ideal. By Theorem 2.1, we obtain $1 \in \sqrt{0}$, a desired contradiction.

Proposition 2.5. Let R be a ring and S be a nonempty subset of R. If I is a quasi n-ideal of R with $S \nsubseteq \sqrt{I}$, then $(I: S)$ is a quasi n-ideal of R.

Proof. It suffices to show that $\sqrt{I} \subseteq \sqrt{(I: S)} \subseteq(\sqrt{I}: S)=\sqrt{I}$. This, in turn, follows from the fact that I is a quasi n-ideal of R and $S \nsubseteq \sqrt{0}$, as needed.

Let R be a ring. We call a quasi n-ideal I of R a maximal quasi n-ideal if there is no quasi n-ideal which contains I properly. We observe that $\sqrt{0}$ is the unique maximal quasi n-ideal in a ring R.

Theorem 2.3. Let R be a ring. If I is a maximal quasi n-ideal of R, then $I=\sqrt{0}$.
Proof. Let I be a maximal quasi n-ideal. We claim that I is an n-ideal. Choose $a, b \in R$ such that $a b \in I$ and $a \notin \sqrt{0}$. Then, by Proposition $2.5,(I: a)$ is a quasi n-ideal of R. Since I is a maximal quasi n-ideal of R, it must be $(I: a)=I$, hence $b \in I$. Consequently, I is a maximal n-ideal, that is, $I=\sqrt{0}$ by [11], Theorem 2.11.

Proposition 2.6. Let R be a zero dimensional ring. Then R admits a quasi n-ideal if and only if $(R, \sqrt{0})$ is a local ring.

Proof. Let R be a zero dimensional ring which admits a quasi n-ideal. Then, by Theorem 2.2, $\sqrt{0}$ is a prime ideal. Moreover, if P is a prime ideal of R, then $\sqrt{0}=P$ by maximality of $\sqrt{0}$. Hence, R is a local ring. For the converse, it can be easily seen that if $(R, \sqrt{0})$ is a local ring, then $\sqrt{0}$ is the unique prime ideal of R. Thus, every proper ideal of R is an n-ideal (so a quasi n-ideal), as desired.

Corollary 2.3. Let R be a ring. Then the following statements are equivalent:
(1) R is a field.
(2) R is a Boolean ring and (0) is a quasi n-ideal.
(3) R is a von Neumann regular ring and (0) is a quasi n-ideal.

Proof. $(1) \Rightarrow(2)$ and $(2) \Rightarrow(3)$ are clear.
$(3) \Rightarrow(1)$: Assume that R is a von Neumann regular ring and (0) is a quasi n-ideal. So, R is a reduced ring and is zero dimensional. Hence, R is a field by Proposition 2.6.

Corollary 2.4 ([11], Proposition 3.1). Let m be a positive integer. Then the following statements are equivalent:
(1) \mathbb{Z}_{m} has a quasi n-ideal.
(2) \mathbb{Z}_{m} has an n-ideal.
(3) $m=p^{k}$ for some $k \in \mathbb{Z}^{+}$, where p is a prime number.

According to [3], a ring R is called an UN-ring if every nonunit element a of R is a product of a unit and a nilpotent element.

Proposition 2.7. Let R be a ring. Then the following statements are equivalent:
(1) R is an UN-ring.
(2) Every proper principal ideal of R is a quasi n-ideal.
(3) Every proper ideal of R is a quasi n-ideal.

Proof. (1) \Rightarrow (2) follows from Proposition 2.25 of [11].
$(2) \Rightarrow(3)$: Let I be a proper ideal of R. Assume that $a b \in I$ for some elements $a \in R-\sqrt{0}$ and $b \in R$. Then, by assumption, $b \in \sqrt{(a b)} \subseteq \sqrt{I}$. Thus, I is a quasi n-ideal.
$(3) \Rightarrow(1)$: Let P be a prime ideal of R, then P is a quasi n-ideal and so $P=\sqrt{0}$, which implies that $\sqrt{0}$ is the unique prime ideal of R. It follows that R is an UN-ring by [3], Proposition 2 (3).

Theorem 2.4. Let $I, I_{1}, I_{2}, \ldots, I_{m}$ be ideals of R such that $I \subseteq I_{1} \cup I_{2} \cup \ldots \cup I_{m}$. If I_{i} is a quasi n-ideal and the others have nonnilpotent elements such that $I \nsubseteq \bigcup_{j \neq i} I_{j}$, then $I \subseteq \sqrt{I_{i}}$.

Proof. Without loss of generality, let $i=1$. By our hypothesis, $I \nsubseteq I_{2} \cup \ldots \cup I_{m}$. Thus, there is $x \in I$ but $x \notin I_{2} \cup \ldots \cup I_{m}$. This means that $x \in I_{1}$. Now, we claim $I \cap \bigcap_{k=2}^{m} I_{k} \subseteq I_{1}$. Choose $\alpha \in I \cap \bigcap_{k=2}^{m} I_{k}$. Note that $x \notin I_{k}$ and $\alpha \in I_{k}$ for $k=2, \ldots, m$. This implies $x+\alpha \notin I_{k}$. Thus, $x+\alpha \in I-\bigcup_{j=2}^{m} I_{j}$, which implies $x+\alpha \in I_{1}$. Then we conlclude $\alpha \in I_{1}$. On the other hand, by Theorem $2.2, \sqrt{0}$ is a prime ideal of R. Hence, $R-\sqrt{0}$ is a multiplicatively closed subset of R, so the product of nonnilpotent elements is a nonnilpotent element. This means that $\prod_{k=2}^{m} I_{k} \cap(R-\sqrt{0}) \neq \emptyset$. Now, note that $I\left(\prod_{k=2}^{m} I_{k}\right) \subseteq I \cap\left(\prod_{k=2}^{m} I_{k}\right) \subseteq I_{1}$. Consider $I\left(\prod_{k=2}^{m} I_{k}\right) \subseteq \sqrt{I_{1}}$ and $\prod_{k=2}^{m} I_{k} \cap(R-\sqrt{0}) \neq \emptyset$. By Theorem 2.1, we conclude $I \subseteq \sqrt{I_{1}}$.

Proposition 2.8. Let R be a ring and J be an ideal of R such that $J \cap$ $(R-\sqrt{0}) \neq \emptyset$. Then:
(1) If I_{1} and I_{2} are two quasi n-ideals of R such that $\sqrt{I_{1}} J=\sqrt{I_{2}} J$, then $\sqrt{I_{1}}=\sqrt{I_{2}}$.
(2) If $\sqrt{I} J$ is a quasi n-ideal of R, then $\sqrt{I J}=\sqrt{I}$.

Proof. (1) Consider $\sqrt{I_{1}} J \subseteq \sqrt{I_{2}}$. By Theorem 2.1, $\sqrt{I_{1}} \subseteq \sqrt{I_{2}}$. Similarly, we conclude $\sqrt{I_{2}} \subseteq \sqrt{I_{1}}$.
(2) By the assumption, $\sqrt{I} J$ is a quasi n-ideal and also consider $\sqrt{I} J \subseteq \sqrt{\sqrt{I} J}$. By Theorem 2.1, we have $\sqrt{I} \subseteq \sqrt{\sqrt{I} J}$. As $\sqrt{\sqrt{I} J}=\sqrt{\sqrt{I}} \cap \sqrt{J}=\sqrt{I J}$, we obtain $\sqrt{I} \subseteq \sqrt{I J}$, as required.

Theorem 2.5. Let $f: R \rightarrow S$ be a homomorphism. Then:
(1) Suppose f is an epimorphism. If I is a quasi n-ideal of R such that $\operatorname{Ker}(f) \subseteq I$, then $f(I)$ is a quasi n-ideal of S.
(2) Suppose f is a monomorphism. If J is a quasi n-ideal of S, then $f^{-1}(J)$ is a quasi n-ideal of S.

Proof. (1) Choose $x, y \in S$ such that $x y \in \sqrt{f(I)}$ and $x \notin \sqrt{0_{S}}$. Then there are $a, b \in R$ with $x=f(a)$ and $y=f(b)$. It is clear that $f(a b) \in \sqrt{f(I)}$. Also, $\operatorname{Ker}(f) \subseteq I$ implies $a b \in \sqrt{I}$. Note that $a \notin \sqrt{0_{R}}$ as $x \notin \sqrt{0_{S}}$. Thus, as I is a quasi n-ideal, we conclude $b \in \sqrt{I}$, that is, $y \in \sqrt{f(I)}$.
(2) Take $a, b \in R$ with $a b \in \sqrt{f^{-1}(J)}$ and $a \notin \sqrt{0_{R}}$. Then there is $k \in \mathbb{N}$ such that $(a b)^{k} \in f^{-1}(J)$, that is, $f(a b)^{k} \in J$. On the other hand, as f is a monomorphism, $a \notin \sqrt{0}$ means $f(a) \notin \sqrt{0_{S}}$. Then we get $f(a)^{k} \notin \sqrt{0_{S}}$. Thus, by hypothesis, we obtain $f(b)^{k} \in J$, i.e., $b \in \sqrt{f^{-1}(J)}$, which completes the proof.

Corollary 2.5. Let I and J be two ideals of R such that $J \subseteq I$.
(1) If I is a quasi n-ideal of R, then I / J is a quasi n-ideal of R / J.
(2) If I / J is a quasi n-ideal of R / J and $J \subseteq \sqrt{0_{R}}$, then I is a quasi n-ideal of R.
(3) If I / J is a quasi n-ideal of R / J and J is a quasi n-ideal of R, then I is a quasi n-ideal of R.

Proof. (1) Let $\pi: R \rightarrow R / J$ be the natural homomorphism. Since $\operatorname{Ker}(f)=$ $J \subseteq I$, by Theorem 2.5, we say $\pi(I)=I / J$ is a quasi n-ideal of R / J.
(2) Choose $a, b \in R$ with $a b \in \sqrt{I}$ and $a \notin \sqrt{0_{R}}$. This implies that $(a+J)(b+J) \in$ $\sqrt{I} / J=\sqrt{I / J}$. Also, note that $a+J \notin \sqrt{0_{R / J}}$, otherwise it would contradict with $a \notin \sqrt{0_{R}}$ since $J \subseteq \sqrt{0_{R}}$. Hence, $b+J \in \sqrt{I / J}$, so $b \in \sqrt{I}$. Consequently, I is a quasi n-ideal of R.
(3) Since J is a quasi n-ideal, by Theorem $2.1, J \subseteq \sqrt{0_{R}}$. Thus, with item (2), it is done.

Corollary 2.6. Let S be a subring of R. If I is a quasi n-ideal of R such that $S \nsubseteq I$, then $I \cap S$ is a quasi n-ideal of S.

Proof. Let $i: S \rightarrow R$ be the injection homomorphism. Clearly, $i^{-1}(I)=I \cap S$. By Theorem 2.5, $I \cap S$ is a quasi n-ideal of S.

Proposition 2.9. Let R be a ring and S be a multiplicatively closed subset of R. Then the following statements hold:
(1) If I is a quasi n-ideal of R, then $S^{-1} I$ is a quasi n-ideal of $S^{-1} R$.
(2) Suppose that $S=r(R)$. If J is a quasi n-ideal of $S^{-1} R$, then J^{c} is a quasi n-ideal of R.

Proof. (1) Choose $a / s, b / t \in S^{-1} R$ such that $(a / s)(b / t) \in \sqrt{S^{-1} I}=S^{-1} \sqrt{I}$ and $a / s \notin \sqrt{0_{S^{-1} R}}$. Then we have $u a b \in \sqrt{I}$ for some $u \in S$. Also, $a / s \notin \sqrt{0_{S^{-1} R}}$ implies that $a \notin \sqrt{0_{R}}$. Since I is a quasi n-ideal of R, we conclude $u b \in \sqrt{I}$, i.e., $b / t=u b /(u t) \in S^{-1} \sqrt{I}$.
(2) Take $a, b \in R$ with $a b \in \sqrt{J^{c}}$ and $a \notin \sqrt{0_{R}}$. Then $(a b)^{k} \in J^{c}$ for some $k \in \mathbb{N}$. Consider $(a / 1)^{k}(b / 1)^{k} \in J$. Now, we claim $(a / 1)^{k} \notin \sqrt{0_{S^{-1} R}}$. Let $(a / 1)^{k} \in \sqrt{0_{S^{-1} R}}$. There exists $t \in \mathbb{N}$ such that $(a / 1)^{k t}=0_{S^{-1} R}$. Thus, for some $u \in S=r(R)$, we have $u a^{k t}=0_{R}$. This implies that $a^{k t} \in \operatorname{Ann}(u)=0_{R}$, i.e., $a \in \sqrt{0_{R}}$. This gives us a contradiction. Thus, as J is a quasi n-ideal of $S^{-1} R$, we conclude $(b / 1)^{k} \in J$. Consequently, $b \in \sqrt{J^{c}}$.

Theorem 2.6. Let R and S be two commutative rings. Then $R \times S$ has no quasi n-ideals.

Proof. Let $I \times J$ be a quasi n-ideal of $R \times S$. Then $\sqrt{I \times J}=\sqrt{I} \times \sqrt{J}$ is an n-ideal of $R \times S$. But this result contradicts with Proposition 2.26 of [11].

Proposition 2.10. Let R be a ring and I be an ideal. Then:
(1) R has a quasi n-ideal if and only if $R[X]$ has a quasi n-ideal.
(2) If $I[X]$ is a quasi n-ideal of $R[X]$, then I is a quasi n-ideal of R.
(3) (I, X) is never a quasi n-ideal of $R[X]$.

Proof. (1) Combine Theorem 2.2 with Lemma 3.6 of [10].
(2) Assume that $I[X]$ is a quasi n-ideal of $R[X]$. Then, by Corollary $2.6, I=$ $I[X] \cap R$ is a quasi n-ideal of R.
(3) It follows from the fact that $\sqrt{(I, X)} \nsubseteq \sqrt{0_{R[X]}}$.

Recall that an ideal I of a ring is said to be a strong finite type (or an $S F T$-ideal) if there exist a natural number k and a finitely generated ideal $J \subseteq I$ such that $x^{k} \in J$ for each $x \in I$.

Proposition 2.11. Let R be a ring and I be an ideal of R. Then the following statements hold:
(1) If $R[[X]]$ admits a quasi n-ideal, then R admits a quasi n-ideal. The converse holds provided that $\sqrt{0_{R}}$ is an SFT-ideal.
(2) If $I[[X]]$ is a quasi n-ideal of $R[[X]]$, then $I[X]$ is a quasi n-ideal of $R[X]$ (so I is a quasi n-ideal of R).
Proof. (1) If $R[[X]]$ has a quasi n-ideal, then $\sqrt{0_{R}}=\sqrt{0_{R[[X]]}} \cap R$ is an n-ideal of R and so $\sqrt{0_{R}}$ is a prime ideal of R. For the converse, we assume that $\sqrt{0_{R}}$ is an SFT-ideal. Then, by [8], Corollary 2.4, $\sqrt{0_{R[[X]]}}=\sqrt{0_{R}}[[X]]$. On the other hand, since R admits a quasi n-ideal, then $\sqrt{0_{R[[X]]}}$ is a prime ideal, which implies that $R[[X]]$ admits a quasi n-ideal.
(2) Suppose that $I[[X]]$ is a quasi n-ideal of $R[[X]]$, then $I[X]=I[[X]] \cap R[X]$ is a quasi n-ideal by Corollary 2.6. Hence, I is a quasi n-ideal.

Let R be a commutative ring with a nonzero identity and M be an R-module. Then the idealization $R(+) M=\{(a, m): a \in R, m \in M\}$ is a commutative ring with componentwise addition and multiplication $(a, m)(b, n)=(a b, a n+b m)$ for each $a, b \in R$ and $m, n \in M$. In addition, if I is an ideal of R and N is a submodule of M, then $I(+) N$ is an ideal of $R(+) M$ if and only if $I M \subseteq N$, see [1].

Theorem 2.7. Let R be a ring and M be an R-module.
(1) A proper ideal J of $R(+) M$ is a quasi n-ideal if and only if J_{R} is a quasi n-ideal of R, where $J_{R}=\{r \in R:(r, m) \in J$ for some $m \in M\}$.
(2) I is a quasi n-ideal of R if and only if $I(+) N$ is a quasi n-ideal of $R(+) M$ for each submodule N of M such that $I M \subseteq N$.

Proof. (1) Let J be a proper ideal of $R(+) M$. It is well known from [1], Theorem 3.2 (3) that $\sqrt{J}=\sqrt{J_{R}}(+) M$, where $J_{R}=\{r \in R:(r, m) \in J$ for some $m \in M\}$. On the other hand, by Theorem 2.1, J is a quasi n-ideal if and only if $\sqrt{J_{R}}(+) M=\sqrt{0}(+) M$ is a prime ideal if and only if J_{R} is a quasi n-ideal of R. It is done.
(2) It follows from (1).

The following is an example of a quasi n-ideal that is not an n-ideal.
Example 2.3. Let $R=\mathbb{Z}$ and $M=\mathbb{Z}_{p q}$, where p and q are prime numbers. Then, the zero ideal of $R(+) M$ is a quasi n-ideal which is not an n-ideal. Indeed, $\sqrt{0_{R(+) M}}=0(+) M$ is prime. However, $(p, 0)(0, q) \in(0,0)$ but $(p, 0) \notin \sqrt{0_{R(+) M}}$ and $(0, q) \notin(0,0)$.

Let R and S be two rings, J be an ideal of S and $f: R \rightarrow S$ be a ring homomorphism. In this setting, we can consider the subring of $R \times S$

$$
R \bowtie^{f} J=\{(r, f(r)+j): r \in R \text { and } j \in J\}
$$

called the amalgamation of R with S along J with respect to f. This construction has been first indroduced and studied by D'Anna, Finocchiaro, and Fontana in [6], [4]. In particular, if I is an ideal of R and $\operatorname{id}_{R}: R \rightarrow R$ is the identity homomorphism on R, then $R \bowtie J=R \bowtie^{\mathrm{id}_{R}} J=\{(r, r+j): r \in R$ and $j \in J\}$ is the amalgamated duplication of R along J (introduced and studied by D'Anna and Fontana in [5]). For all ideals I of R and ideals K of S, set:

$$
\begin{aligned}
I \bowtie^{f} J & =\{(r, f(r)+j): r \in I \text { and } j \in J\}, \\
\bar{K}^{f} & =\{(r, f(r)+j): r \in R, j \in J \text { and } f(r)+j \in K\} .
\end{aligned}
$$

Theorem 2.8. Let R and S be a pair of rings, J be an ideal of S and $f: R \rightarrow S$ be a ring homomorphism. Let I be an ideal of R and K be an ideal of S. The following statements hold:
(1) If $I \bowtie^{f} J$ is a quasi n-ideal (or n-ideal) of $R \bowtie^{f} J$, then I is a quasi n-ideal (or n-ideal) of R. The converse is true if $J \subseteq \sqrt{0_{S}}$.
(2) Assume that f is an epimorphism. Then the fact that \bar{K}^{f} is a quasi n-ideal (or n-ideal) of $R \bowtie^{f} J$ implies that K is a quasi n-ideal (or n-ideal) of S. The converse holds provided that $f^{-1}(J) \subseteq \sqrt{0_{R}}$.

Proof. (1) Assume that $I \bowtie^{f} J$ is a quasi n-ideal of $R \bowtie^{f} J$. Let $a, b \in R$ such that $a b \in \sqrt{I}$ and $a \notin \sqrt{0_{R}}$. Then $(a, f(a))(b, f(b)) \in \sqrt{I \bowtie^{f} J}$ with $(a, f(a)) \notin \sqrt{0_{R \bowtie^{f} J}}$. This implies that $(b, f(b)) \in \sqrt{I \bowtie^{f} J}$ and hence $b \in \sqrt{I}$. Now, we will prove the converse under additional hypothesis that $J \subseteq \sqrt{0_{S}}$. Suppose that $(a, f(a)+j)\left(b, f(b)+j^{\prime}\right) \in \sqrt{I \bowtie^{f} J}$ for some $(a, f(a)+j) \notin \sqrt{0_{R \bowtie^{f} J}}$ and $\left(b, f(b)+j^{\prime}\right) \in R \bowtie^{f} J$. By hypothesis, we must have $a \notin \sqrt{0_{R}}$. Therefore, $b \in \sqrt{I}$ and thus $\left(b, f(b)+j^{\prime}\right) \in \sqrt{I \bowtie^{f} J}$. Similarly, one can prove that if $I \bowtie^{f} J$ is an n-ideal of $R \bowtie^{f} J$, then I is an n-ideal of R, and the converse is true if $J \subseteq \sqrt{0_{S}}$.
(2) Let $x, y \in S$ with $x=f(a)$ and $y=f(b)$. Suppose that $x y \in \sqrt{K}$ and $x \notin \sqrt{0_{S}}$. So, $(a, f(a))(b, f(b)) \in \sqrt{\bar{K}^{f}}$ and $(a, f(a)) \notin \sqrt{0_{R \bowtie} \bowtie^{f} J}$. Since \bar{K}^{f} is a quasi n-ideal, we then have $(b, f(b)) \in \sqrt{\overline{K^{f}}}$ and so $y=f(b) \in \sqrt{K}$. For the converse, suppose that K is a quasi n-ideal of S and $f^{-1}(J) \subseteq \sqrt{0_{R}}$. Let $(a, f(a)+j),\left(b, f(b)+j^{\prime}\right) \in R \bowtie^{f} J$ such that $(a, f(a)+j)\left(b, f(b)+j^{\prime}\right) \in \sqrt{\overline{K^{f}}}$ and $(a, f(a)+j) \notin \sqrt{0_{R \bowtie^{f} J}}$. Then $(f(a)+j)\left(f(b)+j^{\prime}\right) \in \sqrt{K}$. The fact that $(a, f(a)+j) \notin \sqrt{0_{R \bowtie^{f} J}}$ ensures that $f(a)+$ $j \notin \sqrt{0_{S}}$. Suppose, on the contrary, that $f(a)+j \in \sqrt{0_{S}}$. As f is an epimorphism, then there exists $c \in R$ such that $f(c)=j$. It is obvious that $c \in \sqrt{0_{R}}$ and hence $j \in \sqrt{0_{S}}$, which proves that $a^{m} \in \operatorname{Ker}(f)$ for a positive integer m. Moreover, $a \in \sqrt{0_{R}}$ since $f^{-1}(J) \subseteq \sqrt{0_{R}}$, that is, $(a, f(a)+j) \in \sqrt{0_{R \bowtie \bowtie^{f} J}}$, a contradiction. We conclude that $\left(f(b)+j^{\prime}\right) \in \sqrt{K}$ since K is a quasi n-ideal of S. Thus, \bar{K}^{f} is a quasi n-ideal of $R \bowtie^{f} J$. Similarly, one can prove that if \bar{K}^{f} is an n-ideal of $R \bowtie^{f} J$, then K is an n-ideal of S, and the converse is true in the case, where $f^{-1}(J) \subseteq \sqrt{0_{R}}$. This completes the proof.

Corollary 2.7. Let R be a ring and let I and J be ideals of R.
(1) If $I \bowtie J$ is a quasi n-ideal (or n-ideal) of $R \bowtie J$, then I is a quasi n-ideal (or n-ideal) of R. The converse is true if $J \subseteq \sqrt{0_{R}}$.
(2) If $\bar{I}:=\{(a, a+i): a \in R, j \in J$ and $a+j \in I\}$ is a quasi n-ideal (or n-ideal) of $R \bowtie J$, then I is a quasi n-ideal (or n-ideal) of R. The converse is true if $J \subseteq \sqrt{0_{R}}$.

The following example shows that the converse of Theorem 2.8 (1) fails if one deletes the hypothesis that $J \subseteq \sqrt{0_{S}}$.

Example 2.4. Let $R=\mathbb{Z}(+) \mathbb{Z}_{p q}$, where p and q are prime numbers, and let $J=p \mathbb{Z}(+) \mathbb{Z}_{p q}$. It is clear that $I=0(+) \mathbb{Z}_{p q}$ is an n-ideal (and so is a quasi n-ideal) of R. However, $I \bowtie J$ is not a quasi n-ideal (and so is not an n-ideal). Indeed, $((0, \overline{1}),(p, \overline{1}))((1, \overline{0}),(1, \overline{0}))=((0, \overline{1}),(p, \overline{1})) \in I \bowtie J$. But $((0, \overline{1}),(p, \overline{1})) \notin \sqrt{0_{R \bowtie J}}$ and $((1, \overline{0}),(1, \overline{0})) \notin \sqrt{I \bowtie J}$.

In the following example, we prove that the condition $f^{-1}(J) \subseteq \sqrt{0_{R}}$ cannot be discarded in the proof of the converse of Theorem 2.8 (2).

Example 2.5. Let $R=\mathbb{Z}(+) \mathbb{Z}_{p q}$, where p and q are prime numbers, $S=\mathbb{Z}$, and let $J=p \mathbb{Z}$. Consider the canonical epimorphism $f: R \rightarrow S$ defined by $f(r, m)=r$. Note that $f^{-1}(J)=p \mathbb{Z}(+) \mathbb{Z}_{p q} \nsubseteq \sqrt{0_{R}}$. On the other hand, $K=(0)$ is an n-ideal of S. However, \bar{K}^{f} is not a quasi n-ideal of $R \bowtie^{f} J$ because $((p, \overline{0}), 0)((1, \overline{0}), 1) \in \bar{K}^{f}$, $((p, \overline{0}), 0) \notin \sqrt{0_{R \bowtie^{f} J}}$ and $((1, \overline{0}), 1) \notin \sqrt{\bar{K}^{f}}$.

References

[1] D. D. Anderson, M. Winders: Idealization of a module. J. Commut. Algebra 1 (2009), 3-56.
zbl MR doi
[2] A. Badawi, U. Tekir, E. Yetkin: On 2-absorbing primary ideals in commutative rings. Bull. Korean Math. Soc. 51 (2014), 1163-1173.
zbl MR doi
[3] G. Călugăreanu: $U N$-rings. J. Algebra Appl. 15 (2016), Article ID 1650182, 9 pages.
[4] M. D'Anna, C. A. Finocchiaro, M. Fontana: Amalgamated algebras along an ideal. Commutative Algebra and Its Applications. Walter de Gruyter, Berlin, 2009, pp. 155-172.
zbl MR doi
[5] M. D'Anna, C. A. Finocchiaro, M. Fontana: Properties of chains of prime ideals in amalgamated algebras along an ideal. J. Pure Appl. Algebra 214 (2010), 1633-1641.
zbl MR doi
[6] M. D’Anna, M. Fontana: An amalgamated duplication of a ring along an ideal: The basic properties. J. Algebra Appl. 6 (2007), 443-459.
zbl MR doi
[7] L. Fuchs: On quasi-primary ideals. Acta Sci. Math. 11 (1947), 174-183.
[8] S. Hizem, A. Benhissi: Nonnil-Noetherian rings and the SFT property. Rocky Mt. J. Math. 41 (2011), 1483-1500.
[9] R. Mohamadian: r-ideals in commutative rings. Turk. J. Math. 39 (2015), 733-749.
zbl MR doi
[10] M. Tamekkante, E. M. Bouba: $(2, n)$-ideals of commutative rings. J. Algebra Appl. 18 (2019), Article ID 1950103, 12 pages.
zbl MR doi
[11] U. Tekir, S. Koc, K. H. Oral: n-ideals of commutative rings. Filomat 31 (2017), 2933-2941.
[12] U. Tekir, S. Koç, K. H. Oral, K. P. Shum: On 2-absorbing quasi-primary ideals in commutative rings. Commun. Math. Stat. 4 (2016), 55-62.

Authors' addresses: Adam Anebri, Najib Mahdou, Laboratory of Modelling and Mathematical Structures, Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S.M. Ben Abdellah Fez, Morocco, e-mail: adam.anebri @usmba.ac.ma, mahdou@hotmail.com, Emel Aslankarayiğit Uğurlu (corresponding author), Department of Mathematics, Marmara University, Istanbul, Turkey, e-mail: emelakyugurlu@gmail.com.

