Person: KULABAŞ, NECLA
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
KULABAŞ
First Name
NECLA
Name
5 results
Search Results
Now showing 1 - 5 of 5
Publication Open Access Novel 1,2,4-triazoles derived from Ibuprofen: synthesis and in vitro evaluation of their mPGES-1 inhibitory and antiproliferative activity(2022-11-01) BİNGÖL ÖZAKPINAR, ÖZLEM; KULABAŞ, NECLA; TATAR, ESRA; KÜÇÜKGÜZEL, İLKAY; Bulbul B., Ding K., Zhan C., Ciftci G., YELEKÇİ K., Gurboga M., BİNGÖL ÖZAKPINAR Ö., Aydemir E., Baybag D., ŞAHİN F., et al.Some novel triazole-bearing ketone and oxime derivatives were synthesized from Ibuprofen. In vitro cytotoxic activities of all synthesized molecules against five cancer lines (human breast cancer MCF-7, human lung cancer A549, human prostate cancer PC-3, human cervix cancer HeLa, and human chronic myelogenous leukemia K562 cell lines) were evaluated by MTT assay. In addition, mouse embryonic fibroblast cells (NIH/3T3) were also evaluated to determine the selectivity. Compounds 18, 36, and 45 were found to be the most cytotoxic, and their IC50 values were in the range of 17.46-68.76 mu M, against the tested cancer cells. According to the results, compounds 7 and 13 demonstrated good anti-inflammatory activity against the microsomal enzyme prostaglandin E2 synthase-1 (mPGES-1) enzyme at IC50 values of 13.6 and 4.95 mu M. The low cytotoxicity and non-mutagenity of these compounds were found interesting. Also, these compounds significantly prevented tube formation in angiogenesis studies. In conclusion, the anti-inflammatory and angiogenesis inhibitory activities of these compounds without toxicity suggested that they may be promising agents in anti-inflammatory treatment and they may be supportive agents for the cancer treatment.Publication Open Access Novel azole-urea hybrids as VEGFR-2 inhibitors: Synthesis, in vitro antiproliferative evaluation and in silico studies(2023-12-15) KULABAŞ, NECLA; DANIŞ, ÖZKAN; KÜÇÜKGÜZEL, İLKAY; Shirzad M. M., KULABAŞ N., Erdoğan Ö., Çevik Ö., Dere D., Yelekçi K., DANIŞ Ö., Küçükgüzel İ.The vascular endothelial growth factor receptor-2 (VEGFR-2) is a receptor tyrosine kinase known to be abnormally expressed in various malignant tumors, including breast cancer, and is considered one of the most important contributors to tumor angiogenesis. Sorafenib is one of many VEGFR-2 inhibitors that have received approval for clinical use from the US FDA in recent years. Accordingly, in this study, the synthesis of two new pyrazoles, six 1,3,4-oxadiazoles, four 1,3,4-thiadiazoles, and ten 1,2,4-triazole-3-thione derivatives having structural characteristics similar to sorafenib was carried out. A preliminary screening of synthesized compounds and known inhibitors sorafenib and staurosporine at 10 µM concentration on in vitro activity of VEGFR-2 was performed, and compounds 10c, 8a, and 11 g were identified as the most potent derivatives with% VEGFR-2 residual activities lower than 30%, and dose-dependent inhibition studies was carried out to determine the IC50 values of these inhibitors. Compound 10c was found to be the most potent inhibitor of VEGFR-2 activity with an IC50 value of 0.664 µM. The anti-proliferative activity of synthesized derivatives was assessed against a breast carcinoma (MCF-7) cell line, a triple negative human breast adenocarcinoma (MDA-MB-231) cell line, and noncancerous fibroblast cells (L929). Compound 8a displayed superior activity when compared to sorafenib against MCF-7 (7.69 fold) and MDA-MB-231 (1.52 fold) cell lines while displaying 3.75-fold less toxicity against the normal L929 cell line. Annexin V binding assay revealed that compound 8a significantly increased early and late apoptosis in MCF-7 cells and late apoptosis and necrosis in MDA-MB-231 cells. Computational studies such as molecular docking and ADMET evaluation were performed to elucidate the binding interactions and drug-likeness of the synthesized compounds. The results indicate that compound 8a could be a promising candidate for the development of a novel anti-angiogenic and anti-proliferative agent.Publication Open Access Identification of some novel amide conjugates as potent and gastric sparing anti-inflammatory agents: In vitro, in vivo, in silico studies and drug safety evaluation(2023-08-05) KULABAŞ, NECLA; DANIŞ, ÖZKAN; OGAN, AYŞE; ERDEM, SAFİYE; KÜÇÜKGÜZEL, İLKAY; KULABAŞ N., Set İ., Aktay G., GÜRSOY Ş., DANIŞ Ö., OGAN A., Sağ Erdem S., Erzincan P., Helvacıoğlu S., Hamitoğlu M., et al.Today, usage of NSAIDs (nonsteroidal anti-inflammatory drugs) is very common. However, it has been proven by many studies that NSAIDs with free carboxylic acid group damage the GI (gastrointestinal) system. Our aim was to mask the acidic groups of NSAIDs to prevent or reduce their side effects while preserving their pharmacological effects. In this study, new amide derivatives of known NSAIDs, compounds 11–20, were synthesized to investigate their analgesic and anti-inflammatory effects using in vivo models. While compound 11 showed the most remarkable anti-inflammatory activity by 60.9% inhibition value at 200 mg/kg dose, compounds 11, 12, 15 and 18 had almost the same analgesic activity to that of acetylsalicylic acid (100 mg/kg) and flurbiprofen (100 mg/kg). In addition, all test compounds used at high dose (200 mg/kg, p.o) did not show any acute toxicity. COX-1 and COX-2 inhibition properties of all compounds were measured by biochemical methods and the interaction of the most active compounds with COX enzymes is elucidated by computer-assisted virtual screening methods. It was determined by in vitro enzyme inhibition studies that compound 11 and 13, synthesized from selective COX-1 inhibitors dexketoprofen and flurbiprofen, are selective COX-2 inhibitors. Moreover, compounds 11–13 were found to be non-mutagenic according to the mutagenicity assay using Salmonella TA98 and TA100 strains with and without metabolic activation. Finally, the prediction of ADMET profile and drug-likeness properties of compounds 11–20 were examined and the obtained results were evaluated.Publication Open Access Synthesis and evaluation of antiproliferative and mPGES-1 inhibitory activities of novel carvacrol-triazole conjugates(2022-01-01) KULABAŞ, NECLA; DANIŞ, ÖZKAN; OGAN, AYŞE; Demirbolat İ., KULABAŞ N., Gürboğa M., Özakpınar Ö. B., Çiftçi G., Yelekçi K., Liu J., Jakobsson P., DANIŞ Ö., OGAN A., et al.Some novel triazole-bearing acetamide derivatives 9-26 were synthesized starting from carvacrol. All synthesized compounds were characterized by FTIR, 1H-NMR, 13C-NMR and MS data. In vitro cytotoxic activities of all synthesized molecules against five cancer lines (human breast cancer MCF-7, human lung cancer A549, human prostate cancer PC-3, human chronic myelogenous leukemia K562, human neuroblastoma SH-SY5Y cell lines) were evaluated by MTT assay. Compounds were also tested on mouse embryonic fibroblast cells (NIH/3T3) to determine selectivity. Eighteen target compounds 9-26 were screened for their mPGES-1 and COX-1/2 inhibitory activities. Of these compounds, 26 (KUC16D425) showed the highest mPGES-1 inhibition at 10 µM. This compound has also been observed to induce apoptosis and inhibit cell migration in MCF-7 cells. In silico molecular docking calculations were performed to understand the binding interactions of compounds with target proteins. ADMET predictions were also done to evaluate drug-like properties of the novel compounds.Publication Open Access Synthesis and standardization of an impurity of acetaminophen, development and validation of liquid chromatographic method(2023-01-20) KULABAŞ, NECLA; KÜÇÜKGÜZEL, İLKAY; Arıkan C. C., KULABAŞ N., KÜÇÜKGÜZEL İ.© 2022 Elsevier B.V.One of the impurities of acetaminophen, N,N\"-(oxydi-4,1-phenylene)diacetamide (ODAA), which is not specified in the organic impurities analysis method of acetaminophen by high performance liquid chromatography (HPLC) in American Pharmacopoeia Version 42 (USP 42), was synthesized, characterized and standardized. A new and optimized liquid chromatographic method for the determination of organic impurities of acetaminophen was developed using an ultra-high performance liquid chromatographic (UHPLC) system, which can separate this impurity. This new liquid chromatographic method has been optimized and validated for the simultaneous determination of acetaminophen related compound B, acetaminophen related compound C, acetaminophen related compound D, acetaminophen related compound J and ODAA, the organic impurities in acetaminophen drug substance. Acetaminophen was also subjected to stress-testing under acidic hydrolysis, alkaline hydrolysis, oxidative degradation, thermal degradation and photolytic degradation for 15 days. The impurity molecule, ODAA was synthesized using 4,4′-oxydianiline and acetic anhydride. The chemical structure of the synthesized ODAA molecule was confirmed by characterization studies. The potency of ODAA was found to be 99.64% as a result of the relevant analyses. The chromatographic separation was achieved on a C8 (150 mm × 2.1 mm; 2-µm particle size) reversed-phase column using a gradient elution, being solvent A: methanol-water-glacial acetic acid (50:950:1, v/v/v) and solvent B: methanol-water-glacial acetic acid (500:500:1, v/v/v) flowing at a rate of 0.2 mL/min. The limits of quantitation (S/N 10:1) were 1.248 µg/mL for acetaminophen, 0.373 µg/mL for acetaminophen related compound B, 1.217 µg/mL for acetaminophen related compound C, 0.369 µg/mL for acetaminophen related compound D, 0.125 µg/mL for acetaminophen related compound J and 0.373 µg/mL for ODAA. The individual mean recoveries of each impurity molecule spiked into acetaminophen samples at different concentration levels ranged from 93% to 104%. The method developed for UHPLC instrument was successfully applied to the analyses of different lots of acetaminophen. Thus, the proposed method can be used for determination of this impurity in the presence of other specified impurities of acetaminophen.