Person:
VELİOĞLU ÖĞÜNÇ, AYLİZ

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

VELİOĞLU ÖĞÜNÇ

First Name

AYLİZ

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Propylthiouracil-induced hypothyroidism protects ionizing radiation-induced multiple organ damage in rats
    (BIOSCIENTIFICA LTD, 2006-05) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sener, G.; Kabasakal, L.; Atasoy, B. M.; Erzik, C.; Velioglu-Ogunc, A.; Cetinel, S.; Contuk, G.; Gedik, N.; Yegen, B. C.
    The objective of this study was to examine the potential radioprotective properties of propylthiouracil (PTU)-induced hypothyroidism against oxidative organ damage induced by irradiation. Sprague-Dawley rats were pre-treated with saline or PTU (10 mg/kg i.p.) for 15 days, and were then exposed to whole-body irradiation (800 cGy). A group of rats were decapitated at 6 h after exposure to irradiation, while another group was followed for 72 h after irradiation, during which saline or PTU injections were repeated once daily. Lung, liver, kidney and ileum samples were obtained for the determination of malondialdehyde (MDA; an index of lipid peroxidation) and glutathione (GSH, an antioxidant) levels, myeloperoxidase activity (MPO; an index of tissue neutrophil accumulation) and collagen contents, while oxidant-induced DNA fragmentation was evaluated in the ileal tissues. All tissues were also examined microscopically and assayed for the production of reactive oxidants using chemiluminescence (CL). Lactate dehydrogenase (LDH), an indicator of tissue damage, and turnout necrosis factor-alpha (TNF alpha) were assayed in serum samples. Irradiation caused a significant decrease in GSH level, which was accompanied by significant increases in MDA levels, MPO activity, CL levels and collagen content of the tissues studied (P < 0.05-0.001). Similarly, serum TNFa and LDH were elevated in the irradiated rats as compared with the control group. On the other hand, PTU treatment reversed all these biochemical indices, as well as histopathological alterations induced by irradiation. Our results suggested that PTU-induced hypothyroidism reduces oxidative damage in the lung, hepatic, renal and ileal tissues probably due to hypometabolism, which is associated with decreased production of reactive oxygen metabolites and enhancement of antioxidant mechanisms.
  • Publication
    Protective effects of resveratrol against acetaminophen-induced toxicity in mice
    (WILEY, 2006) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sener, Goksel; Toklu, Hale Z.; Sehirli, A. Ozer; Velioglu-Ogunc, Ayliz; Cetinel, Sule; Gedik, Nursal
    This investigation elucidates the role of free radicals in acetaminophen (AA)-induced toxicity and the possible protection by resveratrol (RVT). BALB-c mice were injected with a single dose of 900 mg/kg AA to induce toxicity, while RVT administred in a dose of 30 mg/kg i.p. following AA. Mice were sacrificed 4 h after AA injection to determine serum ALT, AST and tumor necrosis factor-alpha (TNF-alpha) levels in blood, and glutathione (GSH), malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity and collagen contents in liver tissues. Formation of reactive oxygen species in hepatic tissue samples was monitored by using chemiluminescence (CL) technique with luminol and lucigenin probe. ALT, AST levels and TNF-alpha were increased significantly after AA treatment, and reduced with RVT. AA caused a significant decrease in GSH levels while MDA levels and MPO activity were increased in liver tissues. On the other hand when RVT administered following AA, depletion of GSH and accumulation of MDA and neutrophil infiltration were reversed back to control. Furthermore increased luminol and lucigenin CL levels in the AA group reduced by RVT treatment. Our results implicate that AA causes oxidative damage in hepatic tissues and RVT, by its potent antioxidant effects protects the liver tissue. These data suggest that RVT may be of therapeutic use in preventing hepatic oxidative injury due to AA toxicity. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
  • Publication
    Ginkgo biloba extract protects against ionizing radiation-induced oxidative organ damage in rats
    (ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD, 2006) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sener, G; Kabasakal, L; Atasoy, BM; Erzik, C; Velioglu-Ogunc, A; Cetinel, U; Gedik, N; Yegen, BC
    The present study was designed to determine the possible protective effects of Ginkgo biloba extract (EGb) against oxidative organ damage induced by irradiation (IR). Sprague-Dawley rats were exposed to whole-body IR (800cGy) after a 15-day pretreatment with either saline or EGb (50 mg/kg/day), intraperitoneally, and treatments were repeated immediately after the IR. Then the rats were decapitated at either 6 h or 72 It after IR, where EGb or saline injections were repeated once daily. Lung, liver, kidney and ileum samples were obtained for the determination of malondialdehyde, glutathione levels, myeloperoxidase activity and collagen contents, while oxidant-induced DNA fragmentation was evaluated in the ileal tissues. All tissues were also examined microscopically and assayed for the production of reactive oxidants using chemiluminescence (CL). Lactate dehydrogenase (LDH)-an indicator of tissue damage and TNF-alpha were assayed in serum samples. In the saline-treated irradiation groups, glutathione levels were decreased significantly, while the malondialdehyde levels, myeloperoxidase activity and collagen content were increased in the tissues (p < 0.01-0.001), which were in parallel with the increases in luminol and lucigenin CL values. In the EGb treated-IR groups, all of these oxidant responses were prevented significantly (p < 0.05-0.01). LDH and TNF-alpha levels, which were increased significantly (p < 0.01-0.001) following IR, were decreased (p < 0.05-0.001) with EGb treatment. In conclusion, the present data demonstrate that EGb, through its free radical scavenging and antioxidant properties, attenuates irradiation-induced oxidative organ injury, suggesting that EGb may have a potential benefit in enhancing the success of radiotherapy. (c) 2005 Elsevier Ltd. All rights reserved.
  • PublicationOpen Access
    The Influence of N-Acetylcysteine Alone and in Combination with Angiotensin Converting Enzyme Inhibitor and Angiotensin Receptor Antagonist on Systemic and Tissue Levels in Rats with Experimentally-Induced Chronic Renal Failure
    (ZOOLOGICAL SOC PAKISTAN, 2020) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sehirli, Ahmet Ozer; Sayiner, Serkan; Velioglu-Ogunc, Ayliz; Serakinci, Nedime; Eksioglu-Demiralp, Emel; Yegen, Berrak; Ercan, Feriha; Sener, Goksel
    The protective effects of ACE inhibitor, Captopril, and angiotensin receptor blocker, Valsartan, were evaluated in the treatment of chronic renal failure (CRF) with and without the presence of N-acetylcysteine (NAC). The renal mass of Wistar albino rats was reduced at a rate of 5/6. Captopril, Valsartan and NAC were applied intra-peritoneal alone or in combination. Blood pressure and heart rate were monitored at weekly intervals over a period of six weeks. Serum creatinine, blood urea nitrogen (BUN), lactate dehydrogenase (LDH) activity, cytokines (TNF-alpha, IL-1 beta, IL-6) concentrations, urinary volume, creatinine, and both serum and urinary electrolyte levels were measured. In addition, the apoptosis rate of white blood cells was analysed from plasma samples. Tissue samples from the brain, heart, aorta and kidneys were used for analysis of the collagen content besides tissue luminol, lucigenin, malondialdehyde (MDA) and glutathione (GSH) levels. A significant difference was determined between the CRF group and the control group with regard to heart rate, blood pressure, serum creatinine, BUN, LDH, cytokines and urinary electrolyte levels. Furthermore, monocyte and neutrophil apoptosis, tissue luminol, lucigenin, malondialdehyde and collagen levels were found to increase. Tissue glutathione levels were found to decrease indicating oxidative damage. These results indicate that oxidative mechanisms induce tissue damage in CRF, and the angiotensin receptor blocker, Valsartan, improved oxidative tissue damage when used in combination with the ACE inhibitor, Captopril or NAC, yielded better results and could be a novel approach for the treatment of CRF when used in combination with anti-oxidants.
  • Publication
    Ginkgo biloba extract improves oxidative organ damage in a rat model of thermal trauma
    (LIPPINCOTT WILLIAMS & WILKINS, 2005) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sakarcan, A; Sehirli, O; Velioglu-Ovunc, A; Ercan, F; Erkanli, G; Gedik, N; Sener, G
    This study was designed to determine the possible protective effect of Ginkgo biloba extract (EGb) against oxidative organ damage distant from the original burn wound. Under brief ether anesthesia, the shaved dorsum of the rats was exposed to 90 degrees C (burn group) or 25 degrees C (control group) water bath for 10 seconds. EGb (50 mg/kg/day) or saline was administered intraperitoneally immediately and at 12 hours after the burn injury. Rats were decapitated 24 hours after burn injury and tissue samples from the liver and kidney were taken for the determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and collagen contents. Formation of reactive oxygen species in the tissue samples was monitored by the chemiluminescence technique. Tissues also were examined microscopically. Blood urea nitrogen, creatinine, alanine aminotransferase, and aspartate aminotransferase levels and tumor necrosis factor- and lactate dehydrogenase activity were assayed in serum samples. Severe skin scald injury (30% TBSA) caused a significant decrease in GSH levels and significant increases in MDA levels, MPO activity, and collagen content of hepatic and renal tissues. Treatment of rats with EGb significantly increased the GSH level and decreased the MDA level, MPO activity, and collagen contents. Similarly, serum alanine aminotransferase, aspartate aminotransferase, and blood urea nitrogen levels, as well as lactate dehydrogenase and tumor necrosis factor-, were increased in the burn group as compared with the control group. However, treatment with EGb reversed all these biochemical indices, as well as histopathological alterations that were induced by thermal trauma. Our results show that thermal trauma-induced oxidative damage in hepatic and renal tissues is protected by the administration of EGb, with its antioxidant effects. Therefore, its therapeutic role as a tissue injury-limiting agent must be further elucidated in oxidant-induced tissue damage.