Person: VELİOĞLU ÖĞÜNÇ, AYLİZ
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
VELİOĞLU ÖĞÜNÇ
First Name
AYLİZ
Name
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access The Influence of N-Acetylcysteine Alone and in Combination with Angiotensin Converting Enzyme Inhibitor and Angiotensin Receptor Antagonist on Systemic and Tissue Levels in Rats with Experimentally-Induced Chronic Renal Failure(ZOOLOGICAL SOC PAKISTAN, 2020) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sehirli, Ahmet Ozer; Sayiner, Serkan; Velioglu-Ogunc, Ayliz; Serakinci, Nedime; Eksioglu-Demiralp, Emel; Yegen, Berrak; Ercan, Feriha; Sener, GokselThe protective effects of ACE inhibitor, Captopril, and angiotensin receptor blocker, Valsartan, were evaluated in the treatment of chronic renal failure (CRF) with and without the presence of N-acetylcysteine (NAC). The renal mass of Wistar albino rats was reduced at a rate of 5/6. Captopril, Valsartan and NAC were applied intra-peritoneal alone or in combination. Blood pressure and heart rate were monitored at weekly intervals over a period of six weeks. Serum creatinine, blood urea nitrogen (BUN), lactate dehydrogenase (LDH) activity, cytokines (TNF-alpha, IL-1 beta, IL-6) concentrations, urinary volume, creatinine, and both serum and urinary electrolyte levels were measured. In addition, the apoptosis rate of white blood cells was analysed from plasma samples. Tissue samples from the brain, heart, aorta and kidneys were used for analysis of the collagen content besides tissue luminol, lucigenin, malondialdehyde (MDA) and glutathione (GSH) levels. A significant difference was determined between the CRF group and the control group with regard to heart rate, blood pressure, serum creatinine, BUN, LDH, cytokines and urinary electrolyte levels. Furthermore, monocyte and neutrophil apoptosis, tissue luminol, lucigenin, malondialdehyde and collagen levels were found to increase. Tissue glutathione levels were found to decrease indicating oxidative damage. These results indicate that oxidative mechanisms induce tissue damage in CRF, and the angiotensin receptor blocker, Valsartan, improved oxidative tissue damage when used in combination with the ACE inhibitor, Captopril or NAC, yielded better results and could be a novel approach for the treatment of CRF when used in combination with anti-oxidants.Publication Metadata only Ginkgo biloba extract improves oxidative organ damage in a rat model of thermal trauma(LIPPINCOTT WILLIAMS & WILKINS, 2005) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sakarcan, A; Sehirli, O; Velioglu-Ovunc, A; Ercan, F; Erkanli, G; Gedik, N; Sener, GThis study was designed to determine the possible protective effect of Ginkgo biloba extract (EGb) against oxidative organ damage distant from the original burn wound. Under brief ether anesthesia, the shaved dorsum of the rats was exposed to 90 degrees C (burn group) or 25 degrees C (control group) water bath for 10 seconds. EGb (50 mg/kg/day) or saline was administered intraperitoneally immediately and at 12 hours after the burn injury. Rats were decapitated 24 hours after burn injury and tissue samples from the liver and kidney were taken for the determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and collagen contents. Formation of reactive oxygen species in the tissue samples was monitored by the chemiluminescence technique. Tissues also were examined microscopically. Blood urea nitrogen, creatinine, alanine aminotransferase, and aspartate aminotransferase levels and tumor necrosis factor- and lactate dehydrogenase activity were assayed in serum samples. Severe skin scald injury (30% TBSA) caused a significant decrease in GSH levels and significant increases in MDA levels, MPO activity, and collagen content of hepatic and renal tissues. Treatment of rats with EGb significantly increased the GSH level and decreased the MDA level, MPO activity, and collagen contents. Similarly, serum alanine aminotransferase, aspartate aminotransferase, and blood urea nitrogen levels, as well as lactate dehydrogenase and tumor necrosis factor-, were increased in the burn group as compared with the control group. However, treatment with EGb reversed all these biochemical indices, as well as histopathological alterations that were induced by thermal trauma. Our results show that thermal trauma-induced oxidative damage in hepatic and renal tissues is protected by the administration of EGb, with its antioxidant effects. Therefore, its therapeutic role as a tissue injury-limiting agent must be further elucidated in oxidant-induced tissue damage.