Person:
VELİOĞLU ÖĞÜNÇ, AYLİZ

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

VELİOĞLU ÖĞÜNÇ

First Name

AYLİZ

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Silymarin, the antioxidant component of Silybum marianum, prevents sepsis-induced acute lung and brain injury
    (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2008) VELİOĞLU ÖĞÜNÇ, AYLİZ; Toklu, Hale Z.; Akbay, Tugba Tunali; Velioglu-Ogunc, Ayliz; Ercan, Feriha; Gedik, Nursal; Keyer-Uysal, Meral; Sener, Goksel
    Background. Sepsis is associated with enhanced generation of reactive oxygen species, which leads to multiple organ dysfunctions. Based on the potent antioxidant effects of silymarin, we investigated the putative protective role of silymarin against sepsis-induced oxidative damage in lung and brain tissues. Materials and methods. Sepsis was induced by cecal ligation and perforation (CLP). Sham and CLP groups received either vehicle or silymarin (50 mg/kg, p.o.) or 150 mg/kg i.p. N-acetylcysteine (NAC) for 10 days prior and immediately after the operation. Six hours after the surgery, rats were decapitated and blood was collected for the measurement of proinflammatory cytokines (tumor necrosis factor-alpha, interleukin-1 beta, and IL-6) levels, lactate dehydrogenase activity, and total antioxidant capacity. Lung and brain samples were taken for the measurement of malondialdehyde and glutathione levels, myeloperoxidase activity, thromboplastic activity, and also for histological assessment. Formation of reactive oxygen species in tissue samples was monitored by using chemiluminescence technique with luminol and lusigenin probe. Results. Sepsis increased serum TNF-alpha, IL-1 beta, IL-6 levels, and lactate dehydrogenase activity and decreased total antioxidant capacity. On the other hand, tissue glutathione levels were decreased while malondialdehyde levels and myeloperoxidase activity were increased in both the lung and the brain tissues due to CLP. Furthermore, luminol and lucigenin chemiluminescence were significantly increased in the CLP group, indicating the presence of the oxidative damage. Silymarine and NAC treatment reversed these biochemical parameters and preserved tissue morphology as evidenced by histological evaluation. Conclusions. Silymarin, like NAC, reduced sepsis-induced remote organ injury, at least in part, through its ability to balance oxidant-antioxidant status, to inhibit neutrophil. infiltration, and to regulate the release of inflammatory mediators. (C) 2008 Elsevier Inc. All rights reserved.
  • Publication
    Protective Potential of Montelukast Against Hepatic Ischemia/Reperfusion Injury in Rats
    (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2010) VELİOĞLU ÖĞÜNÇ, AYLİZ; Oezkan, Erkan; Yardimci, Samet; Dulundu, Ender; Topaloglu, Uemit; Sehirli, Oezer; Ercan, Feriha; Velioglu-Oeguenc, Ayliz; Sener, Goeksel
    Ischemia and reperfusion (I/R) injury is characterized by significant oxidative stress, characteristic changes in the antioxidant system and organ injury leading to significant morbidity and mortality. This study was designed to assess the possible protective effect of montelukast, a selective antagonist of cysteinyl leukotriene receptor 1 (CysLT1), on hepatic I/R injury in rats. Wistar albino rats through clamping hepatic artery, portal vein, and bile duct, were subjected to 45 min of hepatic ischemia followed by 60 min reperfusion period. Montelukast (10 mg/kg; i.p.) was administered 15 min prior to ischemia and immediately before reperfusion period. At the end of the reperfusion period, the rats were killed by decapitation. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) activity, and proinflammatory cytokines (TNF-alpha and IL-1 beta) were determined in blood samples. Malondialdehyde (MDA), and glutathione (GSH) levels and myeloperoxidase (MPO) and Na+, K+-ATPase activities were determined in the liver tissue samples while formation of reactive oxygen species was monitored by using chemiluminescence (CL) technique with luminol and lucigenin probes. Tissues were also analyzed histologically. Serum ALT, AST, and LDH activities were elevated in the I/R group, while this increase was significantly decreased by montelukast treatment. Hepatic GSH levels and Na+, K+- ATPase activity, significantly depressed by I/R, were elevated back to control levels in montelukast-treated I/R group. Furthermore, increases in tissue luminol and lucigenin CL, MDA levels, and MPO activity due to I/R injury were reduced back to control levels with