Person: VELİOĞLU ÖĞÜNÇ, AYLİZ
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
VELİOĞLU ÖĞÜNÇ
First Name
AYLİZ
Name
13 results
Search Results
Now showing 1 - 10 of 13
Publication Metadata only Acetaminophen-induced toxicity is prevented by beta-D-glucan treatment in mice(ELSEVIER SCIENCE BV, 2006) VELİOĞLU ÖĞÜNÇ, AYLİZ; Toklu, Hale Z.; Sehirli, A. Ozer; Velioglu-Ogunc, Ayliz; Cetinel, Sule; Sener, GokselThe protective effect of beta-glucan against oxidative injury caused by acetaminophen was studied in mice liver. BALB-c mice (25-30 g) were pretreated with beta-D-glucan (50 mg/kg, p.o.) for 10 days and on the 11th day they received an overdose of acetaminophen (900 mg/kg, i.p.). Four hours after the acetaminophen injection, mice were decapitated and their blood was taken to determine serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and tumor necrosis factor-alpha (TNF-alpha) levels. Tissue samples of the liver were taken for histological examination or for the determination of levels of malondialdehyde, an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase activity, an index of tissue neutrophil infiltration. The formation of reactive oxygen species in hepatic tissue samples was monitored by using the chemilummescence technique with luminol and lucigenin probes. Acetaminophen caused a significant decrease in the GSH level of the tissue, which was accompanied with significant increases in the hepatic luminol and lucigenin chemiluminescence values, malondialdehyde level, MPO activity and collagen content. Similarly, serum ALT, AST levels, as well as LDH and TNF-alpha, were elevated in the acetaminophen-treated group when compared with the control group. On the other hand, P-D-glucan treatment reversed all these biochemical indices, as well as histopathological alterations that were induced by acetaminophen. In conclusion, these results suggest that beta-D-glucan exerts cytoprotective effects against oxidative injury through its antioxidant properties and may be of therapeutic use in preventing acetaminophen toxicity. (c) 2006 Elsevier B.V. All rights reserved.Publication Metadata only Protective effects of resveratrol against acetaminophen-induced toxicity in mice(WILEY, 2006) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sener, Goksel; Toklu, Hale Z.; Sehirli, A. Ozer; Velioglu-Ogunc, Ayliz; Cetinel, Sule; Gedik, NursalThis investigation elucidates the role of free radicals in acetaminophen (AA)-induced toxicity and the possible protection by resveratrol (RVT). BALB-c mice were injected with a single dose of 900 mg/kg AA to induce toxicity, while RVT administred in a dose of 30 mg/kg i.p. following AA. Mice were sacrificed 4 h after AA injection to determine serum ALT, AST and tumor necrosis factor-alpha (TNF-alpha) levels in blood, and glutathione (GSH), malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity and collagen contents in liver tissues. Formation of reactive oxygen species in hepatic tissue samples was monitored by using chemiluminescence (CL) technique with luminol and lucigenin probe. ALT, AST levels and TNF-alpha were increased significantly after AA treatment, and reduced with RVT. AA caused a significant decrease in GSH levels while MDA levels and MPO activity were increased in liver tissues. On the other hand when RVT administered following AA, depletion of GSH and accumulation of MDA and neutrophil infiltration were reversed back to control. Furthermore increased luminol and lucigenin CL levels in the AA group reduced by RVT treatment. Our results implicate that AA causes oxidative damage in hepatic tissues and RVT, by its potent antioxidant effects protects the liver tissue. These data suggest that RVT may be of therapeutic use in preventing hepatic oxidative injury due to AA toxicity. (c) 2006 Elsevier Ireland Ltd. All rights reserved.Publication Open Access Effect of Vitamin D Deficiency and Replacement on Endothelial Function in Asymptomatic Subjects(ENDOCRINE SOC, 2009-10-01) VELİOĞLU ÖĞÜNÇ, AYLİZ; Tarcin, Ozlem; Yavuz, Dilek Gogas; Ozben, Beste; Telli, Ahu; Ogunc, Ayliz Velioglu; Yuksel, Meral; Toprak, Ahmet; Yazici, Dilek; Sancak, Seda; Deyneli, Oguzhan; Akalin, SemaContext: Vitamin D receptors are present in many tissues. Hypovitaminosis D is considered to be a risk factor for atherosclerosis. Objective: This study explores the effects of vitamin D replacement on insulin sensitivity, endothelial function, inflammation, oxidative stress, and leptin in vitamin D-deficient subjects. Design, Setting, and Patients: Twenty-three asymptomatic vitamin D-deficient subjects with 25-hydroxyvitamin D [25(OH)D] levels below 25 nmol/liter were compared with a control group that had a mean 25(OH)D level of 75 nmol/liter. The vitamin D-deficient group received 300,000 IU im monthly for 3 months. The following parameters were evaluated before and after treatment: vitamin D metabolites, leptin, endothelial function by brachial artery flow mediated dilatation (FMD), insulin sensitivity index based on oral glucose tolerance test, and lipid peroxidation as measures of thiobarbituric acid reactive substances (TBARS). Results: FMD measurements were significantly lower in 25(OH)D-deficient subjects than controls (P = 0.001) and improved after replacement therapy (P = 0.002). Posttreatment values of TBARS were significantly lower than pretreatment levels (P < 0.001). A positive correlation between FMD and 25(OH)D (r = 0.45; P = 0.001) and a negative correlation between FMD and TBARS (r = -0.28; P < 0.05) were observed. There was a significant increase in leptin levels after therapy, and the leptin levels were positively correlated with 25(OH)D levels (r = 0.45; P < 0.05). Conclusions: This study shows that 25(OH)D deficiency is associated with endothelial dysfunction and increased lipid peroxidation. Replacement of vitamin D has favorable effects on endothelial function. Vitamin D deficiency can be seen as an independent risk factor of atherosclerosis. Hypovitaminosis D-associated endothelial dysfunction may predispose to higher rates of cardiovascular disease in the winter. (J Clin Endocrinol Metab 94: 4023-4030, 2009)Publication Metadata only Protective effect of bromelain on corrosive burn in rats(ELSEVIER SCI LTD, 2021) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sehirli, Ahmet Ozer; Sayiner, Serkan; Savtekin, Gokce; Velioglu-Ogunc, AylizIntroduction: In some cases, the tongue and oesophagus tissues are damaged by the corrosive burn. Surgical interventions may cause scar formation, and severe burns treatment methods are limited. This study aims to investigate bromelain, a phytotherapeutic product, on the corrosive burn as a non-surgical option and as an adjunctive therapy, insofar as the treatment of corrosive wounds is not limited only to the treatment of oxidative stress and inflammatory reactions. Methods: On the tongues of Wistar albino rats, chemically produced oral ulcers were created by topical application of NaOH (40%) solution, and in the distal oesophagus same mixture was applied to produce a corrosive oesophageal burn. For a week, they were treated orally by bromelain (100 mg/kg/day) or saline solution. At the end of seven days, animals were decapitated to remove the tongue and oesophagus, and blood samples were collected to obtain serum. Myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH), interleukin-1 beta (IL-1 beta) and tumour necrosis factor-alpha (TNF-alpha) concentrations were measured in serum, and luminol and lucigenin chemiluminescence (CL) were measured in tissue samples. Results: MDA and CL values were significantly increased, and GSH levels in tissue significantly decreased due to the corrosive burns. Saline treated corrosive burn group measured higher in the serum cytokines in according to the control group. Conclusions: Bromelain administration decreased oxidant and inflammatory parameters and increased antioxidant levels in NaOH-induced corrosive burns. Thus, we concluded that bromelain may protect the tongue and oesophagus tissues with its anti-inflammatory and antioxidant effects. (C) 2020 Elsevier Ltd and ISBI. All rights reserved.Publication Metadata only Functional and structural changes of the urinary bladder following spinal cord injury; treatment with alpha lipoic acid(WILEY, 2017) VELİOĞLU ÖĞÜNÇ, AYLİZ; Ekiz, Arif; Ozdemir-Kumral, Zarife Nigar; Ersahin, Mehmet; Tugtepe, Halil; Ogunc, Ayliz Velioglu; Akakin, Dilek; Kiran, Demir; Ozsavci, Derya; Biber, Necat; Hakan, Tayfun; Yegen, Berrak C.; Sener, Goksel; Toklu, Hale Z.BACKGROUND & AIMAlpha lipoic acid (LA) was shown to exert neuroprotection in trauma-induced spinal cord injury (SCI), which is frequently associated with urinary bladder complaints in patients with SCI. Accordingly, the protective effects of LA on biochemical and histological changes in bladder as well as functional studies were assessed. METHODSWistar albino rats were divided as control, SCI, and LA (50mg/kg/day, ip) treated SCI groups (SCI+LA). The standard weight-drop (100g/cm force at T10) method was used to induce a moderately severe SCI. One week after the injury, neurological examination was performed and the rats were decapitated. Bladder samples were taken for histological examination, functional (isolated tissue bath) studies, and for the measurement of biochemical parameters (malondialdehyde, MDA; gluthathione, GSH; nerve growth factor, NGF; caspase-3, luminol and lucigenin chemiluminescences). RESULTSSCI caused a significant (P<0.001) increase in the detrusor muscle thickness. It increased the contractility responses to carbachol and relaxation responses to papaverine (P<0.05-0.001). There were also significant alterations in MDA, caspase-3, luminol, and lucigenin chemiluminescences with concomitant decreases in NGF and GSH (P<0.05). LA treatment reversed histological and functional (contraction and relaxation responses) changes induced by SCI (P<0.05-0.001), but no significant recovery was observed in the impaired neurological functions. CONCLUSIONThese results indicate that LA have a beneficial effect in improving the bladder tonus via its antioxidant and anti-inflammatory actions following SCI.Publication Metadata only Ginkgo biloba extract ameliorates ischemia reperfusion-induced renal injury in rats(ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD, 2005) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sener, G; Sener, E; Sehirli, O; Ogunc, AV; Cetinel, S; Gedik, N; Sakarcan, AThere is increasing evidence to suggest that reactive oxygen metabolites (ROMs) play a role in the pathogenesis of ischemia/reperfusion injury (I/R) in the kidney. This study was designed to determine the possible protective effect of Ginkgo biloba extract (EGb) on renal ischemia/reperfusion (I/R) injury. Wistar albino rats were unilaterally nephrectomized, and 15 days later they were subjected to 45 min of renal pedicle occlusion followed by 6h of reperfusion. Ginkgo biloba extract (EGb) (50mg kg(-1) day(-1)) or saline was administered twice, 15 min prior to ischemia and immediately before the reperfusion period. At the end of the treatment period, all rats were decapitated. Kidney samples were taken for histological examination or detennination of the renal malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content. Production of reactive oxidants was monitored by chemiluminescence (CL) assay. Creatinine and urea concentrations in blood were measured for the evaluation of renal function. Tumor necrosis factor-alpha (TNF-alpha) and lactate dehydrogenase (LDH) were also assayed in serum samples. Ischemia/reperfusion caused a significant decrease in GSH level, which was accompanied with significant increases in MDA level, MPO activity and collagen content of kidney tissues. Similarly, serum BUN and creatinine levels, as well as LDH and TNF-alpha, were elevated in the I/R group as compared to control group. On the other hand, EGb treatment reversed all these biochemical indices, as well as histopathological alterations, which were induced by I/R. The findings imply that ROMs play a causal role in I/R-induced renal injury and EGb exerts renoprotective effects probably by the radical scavenging and antioxidant activities. (c) 2005 Elsevier Ltd. All rights reserved.Publication Open Access The Influence of N-Acetylcysteine Alone and in Combination with Angiotensin Converting Enzyme Inhibitor and Angiotensin Receptor Antagonist on Systemic and Tissue Levels in Rats with Experimentally-Induced Chronic Renal Failure(ZOOLOGICAL SOC PAKISTAN, 2020) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sehirli, Ahmet Ozer; Sayiner, Serkan; Velioglu-Ogunc, Ayliz; Serakinci, Nedime; Eksioglu-Demiralp, Emel; Yegen, Berrak; Ercan, Feriha; Sener, GokselThe protective effects of ACE inhibitor, Captopril, and angiotensin receptor blocker, Valsartan, were evaluated in the treatment of chronic renal failure (CRF) with and without the presence of N-acetylcysteine (NAC). The renal mass of Wistar albino rats was reduced at a rate of 5/6. Captopril, Valsartan and NAC were applied intra-peritoneal alone or in combination. Blood pressure and heart rate were monitored at weekly intervals over a period of six weeks. Serum creatinine, blood urea nitrogen (BUN), lactate dehydrogenase (LDH) activity, cytokines (TNF-alpha, IL-1 beta, IL-6) concentrations, urinary volume, creatinine, and both serum and urinary electrolyte levels were measured. In addition, the apoptosis rate of white blood cells was analysed from plasma samples. Tissue samples from the brain, heart, aorta and kidneys were used for analysis of the collagen content besides tissue luminol, lucigenin, malondialdehyde (MDA) and glutathione (GSH) levels. A significant difference was determined between the CRF group and the control group with regard to heart rate, blood pressure, serum creatinine, BUN, LDH, cytokines and urinary electrolyte levels. Furthermore, monocyte and neutrophil apoptosis, tissue luminol, lucigenin, malondialdehyde and collagen levels were found to increase. Tissue glutathione levels were found to decrease indicating oxidative damage. These results indicate that oxidative mechanisms induce tissue damage in CRF, and the angiotensin receptor blocker, Valsartan, improved oxidative tissue damage when used in combination with the ACE inhibitor, Captopril or NAC, yielded better results and could be a novel approach for the treatment of CRF when used in combination with anti-oxidants.Publication Metadata only Propylthiouracil (PTU)-induced hypothyroidism alleviates burn-induced multiple organ injury(ELSEVIER SCI LTD, 2006) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sener, Goeksel; Sehirli, Oezer; Velioglu-Oeguenc, Ayliz; Ercan, Feriha; Erkanli, Goezde; Gedik, Nursal; Yegen, Berrak C.Oxidative stress has an important role in the development of multiorgan failure after major burn. This study was designed to determine the possible protective effect of experimental hypothyroidism in hepatic and gastrointestinal injury induced by thermal trauma. Sprague Dawley rats were administered saline or PTU (10 mg kg(-1) i.p.) for 15 days, and hypothyroidism was confirmed by depressed serum T-3 and T-4 concentrations. Under brief ether anesthesia, shaved dorsurn of rats was exposed to 90 degrees C (burn group) or 25 degrees C (control group) water bath for 10 s. PTU or saline treatment was repeated at the 12th hour of the burn. Rats were decapitated 24 h after injury and tissue samples from liver, stomach and ileum were taken for the determination of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen contents. Formation of reactive oxygen species in tissue samples was monitored by using chemiluminescence (CL) technique with luminol and lucigenin probes. Tissues were also examined microscopically. Tumor necrosis factor (TNF)-alpha and lactate dehydrogenase (LDH) were assayed in serum samples. Severe skin scald injury (30% of. total body surface area) caused a significant decrease in GSH level, which was accompanied with significant increases in NIDA level, MPO activity, CL levels and collagen content of the studied tissues (p < 0.05-0.001). Similarly, serum TNF-alpha and LDH were elevated in the burn group as compared to control group. On the other hand, PTU treatment reversed all these biochemical indices, as well as histopathological alterations induced by thermal trauma. Our results suggest that PTU-induced hypothyroidism reduces oxidative damage in the hepatic, gastric and ileal tissues probably due to hypometabolism, which is associated with decreased production of reactive oxygen metabolites and enhancement of antioxidant mechanisms. (C) 2006 Elsevier Ltd and ISBI. All rights reserved.Publication Open Access The protective effect of spironolactone and role of the Na+/K+-ATPase pump on intestinal ischemia/reperfusion injury(MARMARA UNIV, 2018-07-02) VELİOĞLU ÖĞÜNÇ, AYLİZ; Akyuz, Cebrail; Uzun, Orhan; Sunamak, Oguzhan; Velioglu-Ogunc, Ayliz; Cetinel, Sule; Sehirli, Ahmet OzerThe aim of this study was to evaluate the possible protective effect of spironolactone (SPL) and role of the Na-K ATPase pump on intestinal ischemia/reperfusion injury. In our study, the period of ischemia was established by clamping the mesenteric artery for 45 minunder anesthesia in Wistar albino rats and the animals left for reperfusion at the end of this period were decapitated after one hour. Spironolactone (20 mg kg(-1)) was administered orally for three days before ischemia, 30 minbefore ischemia. The control group rats were subjected to the Sham operation and administered saline solution. TNF-alpha and IL-1 beta levels were measured in the serum samples. Ileal Na+/K+-ATPase, myeloperoxidase (MPO) analysis were performed. Structural injury was assessed histopathologically. Ischemia/reperfusion increased serum TNF-alpha and IL-1 beta levels together with MPO activity, whereas these values were maintained at the control group levels through SPL activation. However, ischemia/reperfusion decreased Na+/K+-ATPase activity in ileal tissues; however, these parameters were found to be significantly increased with SPL activation. The protective effect of SPL against ischemia/reperfusion injury by different mechanisms, mainly the activity of the Na+/K+-ATPase pump, suggests that this nontoxic agent may constitute a new clinical therapeutic principle.Publication Metadata only Resveratrol improves ifosfamide-induced Fanconi syndrome in rats(ACADEMIC PRESS INC ELSEVIER SCIENCE, 2007) VELİOĞLU ÖĞÜNÇ, AYLİZ; Sehirli, Ozer; Sakarcan, Abdullah; Velioglu-Oeguenc, Ayliz; Cetinel, Sule; Gedik, Nursal; Yegen, Berrak C.; Sener, GoekselRegarding the mechanisms of ifosfamide (IFO)-induced urinary toxicity, several hypotheses have been put forward, among which oxidative stress and depletion of glutathione are suggested. This investigation elucidates the role of free radicals in IFO-induced toxicity and the protection by resveratrol, a natural phytoalexin. Wistar albino rats were injected intraperioneally with saline (0.9% NaCl; control), saline+ resveratrol (RVT; 10 mg/kg/day), ifosfamide (IFO; 50 mg/kg/day) or IFO+RVT for 5 days. Urine was collected for 24 h during the 5th day, and at the 120th h after the first injections, annuals were killed by decapitation and trunk blood was collected. Lactate dehydrogenase (LDH) activity, total antioxidant capacity (AOC) and pro-inflammatory cytokines TNF-alpha, IL-beta and IL-6 were assayed in plasma samples. Kidney and bladder tissues were obtained for biochemical and histological analysis. Formation of reactive oxygen species in the tissue samples was monitored by using chemiluminescence (CL) technique with luminol and lucigenin probes. The results demonstrated that IFO induced a Fanconi syndrome characterized by increased urinary sodium, phosphate, glucose and protein, along with increased serum creatinine and urea levels. On the other hand, RVT markedly ameliorated the severity of renal dysfunction induced by IFO. Furthermore IFO caused a significant decrease in plasma AOC. which was accompanied with significant increases in the levels of the pro-inflammatory mediators and LDH activity, while RVT treatment reversed all these biochemical indices. In the saline-treated IFO group, glutathione levels were decreased significantly, while the malondialdehyde levels, myeloperoxidase activity and collagen content were increased in both tissues, which were in parallel with the increases in CL values. In the RVT-treated IFO group, all of these oxidant responses were prevented significantly. Our results suggest that IFO causes oxidative damage in the renal and bladder tissues and resveratrol, via its antioxidant effects, protects these tissues. Therefore, its therapeutic role in proventing the development of chemotherapeutic drug-induced major toxicity in the urinary system requires further elucidation. (c) 2007 Elsevier Inc. All rights reserved.