Person:
GÜL, MEHMET ZAFER

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

GÜL

First Name

MEHMET ZAFER

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Compressed Biogas-Diesel Dual-Fuel Engine Optimization Study for Ultralow Emission
    (SAGE PUBLICATIONS LTD, 2014-01-01) GÜL, MEHMET ZAFER; Koten, Hasan; Yilmaz, Mustafa; Gul, M. Zafer
    The aim of this study is to find out the optimum operating conditions in a diesel engine fueled with compressed biogas (CBG) and pilot diesel dual-fuel. One-dimensional (1D) and three-dimensional (3D) computational fluid dynamics (CFD) code and multiobjective optimization code were employed to investigate the influence of CBG-diesel dual-fuel combustion performance and exhaust emissions on a diesel engine. In this paper, 1D engine code and multiobjective optimization code were coupled and evaluated about 15000 cases to define the proper boundary conditions. In addition, selected single diesel fuel (dodecane) and dual-fuel (CBG-diesel) combustion modes were modeled to compare the engine performances and exhaust emission characteristics by using CFD code under various operating conditions. In optimization study, start of pilot diesel fuel injection, CBG-diesel flow rate, and engine speed were optimized and selected cases were compared using CFD code. CBG and diesel fuels were defined as leading reactants using user defined code. The results showed that significantly lower NOx emissions were emitted under dual-fuel operation for all cases compared to single-fuel mode at all engine load conditions.
  • Publication
    Experimental investigation of granular flow through an orifice
    (ELSEVIER, 2008) GÜL, MEHMET ZAFER; Ahn, Hojin; Basaranoglu, Zafer; Yilmaz, Mustafa; Bugutekin, Abdulcelil; Guel, M. Zafer
    The characteristics of continuous, steady granular flow through a flat-plate orifice have been experimentally investigated. In particular, the normal stress exerted on the orifice plate has been measured by the normal stress gauge which consists of a strain gauge attached to a cantilever beam. The cantilever beam supports the orifice plate which is freely hanging, and thus normal stresses on the orifice plate have been measured by strains developed in the beam due to normal forces on the plate by particles. Discharge rates of granular particles through the orifice have, therefore, been studied as a function of the average normal stress on the orifice plate. The results show that granular flows through the orifice are characterized by three regimes. When the flow is not choked, the discharge rate increases with the increasing normal stress (Regime I). With the further increase of the normal stress, the discharge rate reaches a maximum, at which the flow appears to start choking. Once the flow becomes choked, the discharge rate starts decreasing (Regime II) for further increase of the normal stress and then becomes independent of the normal stress on the orifice plate (Regime III). The transitional Regime II where the discharge rate decreases with the increasing normal stress is observed to be unstable. The asymptotic discharge rates at Regime III for various orifice sizes and particle sizes are in good agreement with results available in the literature. The maximum discharge rates, which are observed when choking just starts, exceed the asymptotic discharge rates by approximately 20-30%. (c) 2007 Elsevier B.V. All rights reserved.
  • PublicationOpen Access
    ADVANCED NUMERICAL AND EXPERIMENTAL STUDIES ON CI ENGINE EMISSIONS
    (YILDIZ TECHNICAL UNIV, 2018-06-14) GÜL, MEHMET ZAFER; Gul, M. Z.; Koten, H.; Yilmaz, M.; Savci, I. H.
    In these studies, three important works examined to get ultra-low emission for a single cylinder diesel engine. The first study was performed for single fuel and compression ratio (CR), intake and exhaust valve timings, mass flow rate were optimized for a range of engine speed. Then for the same engine injection parameters such as start of injection (SOI), injector cone angle, and split injection structures were examined to get optimum parameters for the diesel engine. In CR studies, different combustion chambers were tested according to injector cone angles and fuel-wall interaction. In the second study, in addition to the above studies, dual fuel compressed biogas (CBG) and diesel combustion were analyzed under different engine loads both experimentally and computationally. Optimized single fuel diesel cases were compared with CBG + Diesel dual fuel cases which employed port injection for CBG fuel. In dual fuel engine applications, CBG fuel and air mixture is induced from intake port and this air-fuel mixture is ignited by pilot diesel fuel near top dead center (TDC). In dual fuel engine mode, exhaust emissions reduced considerably especially in NOx and particulate matter (PM) because of methane (CH4) rate and optimized engine parameters. The third study is focused on aftertreatment systems to minimize residual exhaust emissions. The emissions of the diesel engines consist of various harmful exhaust gases such as carbon monoxide (CO), particulate matter (PM), hydrocarbon (HC), and nitrogen oxides (NOx). Several technologies have been developed to reduce diesel emissions especially NOx reduction systems in last decades. The most promising NOx emission reduction technologies are exhaust gas recirculation (EGR) system to reduce peak cylinder temperature that reduces NOx form caused by combustion and active selective catalyst reduction (SCR) system using reducing agent such as urea-water-solution for exhaust aftertreatment system. In this study, computational fluid dynamic (CFD) methodology was developed with conjugate heat transfer, spray, deposit and chemical reaction modeling then emission prediction tool was developed based on the CFD results with deposit prediction mechanism. CFD and deposit results were correlated with image processing tool in flow test bench.