Person: DEMİR, SERAP
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
DEMİR
First Name
SERAP
Name
13 results
Search Results
Now showing 1 - 10 of 13
Publication Metadata only Investigation of HMG-CoA reductase inhibitory and antioxidant effects of various hydroxycoumarin derivatives(WILEY-V C H VERLAG GMBH, 2020) OGAN, AYŞE; Ozalp, Lalehan; Danis, Ozkan; Yuce-Dursun, Basak; Demir, Serap; Gunduz, Cihan; Ogan, AyseCardiovascular diseases are one of the primary causes of deaths worldwide, and the development of atherosclerosis is closely related to hypercholesterolemia. As the reduction of the low-density lipoprotein cholesterol level is critical for treating these diseases, the inhibition of 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase, which is essentially responsible for cholesterol biosynthesis, stands out as a key solution to lower plasma cholesterol levels. In this study, we synthesized several dihydroxycoumarins and investigated their antioxidant and in vitro HMG-CoA reductase inhibitory effects. Furthermore, we carried out in silico studies and examined the quantum-chemical properties of the coumarin derivatives. We also performed molecular docking experiments and analyzed the binding strength of each coumarin derivative. Our results revealed that compoundIVdisplayed the highest HMG-CoA reductase inhibitory activity (IC50 = 42.0 mu M) in vitro. Cupric-reducing antioxidant capacity and ferric-reducing antioxidant power assays demonstrated that coumarin derivatives exhibit potent antioxidant activities. Additionally, a close relationship was found between the lowest unoccupied molecular orbital energy levels and the antioxidant activities.Publication Open Access In vitro and in silico investigation of inhibitory activities of 3-arylcoumarins and 3-phenylazo-4-hydroxycoumarin on MAO isoenzymes(2022-11-01) DANIŞ, ÖZKAN; DEMİR, SERAP; ERDEM, SAFİYE; OGAN, AYŞE; Yuce-Dursun B., DANIŞ Ö., Ozalp L., Sahin E., DEMİR S., ERDEM S., OGAN A.A series of 3-aryl coumarin derivatives and 3-phenylazo-4-hydroxycoumarin were evaluated for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity by fluorometric enzymological assays. Among 21 coumarin derivatives, compound 21 (3-phenylazo-4-hydroxycoumarin) displayed a good inhibitory activity (0.12 +/- 0.02 mu M) and very high selectivity for MAO-B (SI > 833.33). The inhibition was determined as mixed-type and not time-dependent. Docking studies, molecular dynamics and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculations were performed to elucidate in vitro results. Our results reveal that the insertion of an azo linker between coumarin and phenyl rings in 3-arylcoumarins enhances MAO-B selectivity enormously since such a linker leads to the perfect alignment of the coumarin ring in the aromatic cage and the phenyl ring in the entrance cavity of MAO-B active site. Hydrogen bond interactions with Cys172 in the active site entrance of MAO-B also contributes to the remarkably higher inhibitory activity and selectivity for MAO-B.Publication Metadata only İnsan monoamin oksidaz a ve b inhibitörleri olarak benzokumarin türevlerinin sentezi ve biyolojik olarak değerlendirilmesi(2015-05-07) DANIŞ, ÖZKAN; DEMİR, SERAP; OGAN, AYŞE; ERDEM, SAFİYE; Danış Ö., Yüce Dursun B., Demir S., Alparslan M., Ogan A., Erdem S.Publication Metadata only Preparation, characterization, and in vitro evaluation of isoniazid and rifampicin-loaded archaeosomes(WILEY, 2018) OGAN, AYŞE; Attar, Azade; Bakir, Ceren; Yuce-Dursun, Basak; Demir, Serap; Cakmakci, Emrah; Danis, Ozkan; Birbir, Meral; Ogan, AyseThe ability of Archaea to adapt their membrane lipid compositions to extreme environments has brought in archaeosomes into consideration for the development of drug delivery systems overcoming the physical, biological blockades that the body exhibits against drug therapies. In this study, we prepared unilamellar archaeosomes, from the polar lipid fraction extracted from Haloarcula 2TK2 strain, and explored its potential as a drug delivery vehicle. Rifampicin and isoniazid which are conventional drugs in tuberculosis medication were loaded separately and together in the same archaeosome formulation for the benefits of the combined therapy. Particle size and zeta potential of archaeosomes were measured by photon correlation spectroscopy, and the morphology was assessed by with an atomic force microscope. Encapsulation efficiency and loading capacities of the drugs were determined, and in vitro drug releases were monitored spectrophotometrically. Our study demonstrates that rifampicin and isoniazid could be successfully loaded separately and together in archaeosomes with reasonable drug-loading and desired vesicle-specific characters. Both of the drugs had greater affinity for archaeosomes than a conventional liposome formulation. The results imply that archaeosomes prepared from extremely halophilic archaeon were compatible with the liposomes for the development of stable and sustained release of antituberculosis drugs.Publication Metadata only Alpha-Amylase Immobilization on Epoxy Containing Thiol-Ene Photocurable Materials(KOREAN SOC MICROBIOLOGY & BIOTECHNOLOGY, 2013) ÇAKMAKÇI, EMRAH; Cakmakci, Emrah; Danis, Ozkan; Demir, Serap; Mulazim, Yusuf; Kahraman, Memet VezirThiol-ene polymerization is a versatile tool for several applications. Here we report the preparation of epoxide groups containing thiol-ene photocurable polymeric support and the covalent immobilization of alpha-amylase onto these polymeric materials. The morphology of the polymeric support was characterized by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) coupled with SEM was used to explore the chemical composition. The polymeric support and the immobilization of the enzyme were characterized by FTIR analysis. SEM-EDS and FTIR results showed that the enzyme was successfully covalently attached to the polymeric support. The immobilization efficiency and enzyme activity of alpha-amylase were examined at various pH (5.0-8.0) and temperature (30-80 degrees C) values. The storage stability and reusability of immobilized alpha-amylase were investigated. The immobilization yield was 276 +/- 1.6 mg per gram of polymeric support. Enzyme assays demonstrated that the immobilized enzyme exhibited better thermostability than the free one. The storage stability and reusability were improved by the immobilization on this enzyme support. Free enzyme lost its activity completely within 15 days. On the other hand, the immobilized enzyme retained 86.7% of its activity after 30 days. These results confirm that alpha-amylase was successfully immobilized and gained a more stable character compared with the free one.Publication Metadata only Xylanase immobilization on functionalized polyaniline support by covalent attachment(WILEY-V C H VERLAG GMBH, 2013) KAHRAMAN, MEMET VEZİR; Madakbas, Seyfullah; Danis, Ozkan; Demir, Serap; Kahraman, Memet VezirChemically synthesized polyaniline (PANI) was used as polymeric support for xylanase immobilization. The polymer was first activated with glutaraldehyde and then xylanase was successfully immobilized. Xylanase bound polymer was characterized using FTIR. The optimum pH of the immobilized enzyme was at pH 5, which was shifted 1.0?pH unit to the acidic region when compared to the free enzyme. Thermal stability of the xylanase was improved with the immobilization. The characteristic properties of the immobilized and native enzyme, such as kinetic activity, reusability and storage stability were also studied at optimum pH and temperature. Immobilized enzyme exhibited better reusability and storage stability than the free one. Vmax values for the free and immobilized enzymes were calculated as 1.44 and 0.44?mg/mL/min, respectively. The Km values for the immobilized xylanase were found to be lower.Publication Metadata only Covalent immobilization of a-amylase onto thermally crosslinked electrospun PVA/PAA nanofibrous hybrid membranes(WILEY, 2013) KAHRAMAN, MEMET VEZİR; Basturk, Emre; Demir, Serap; Danis, Ozkan; Kahraman, Memet VezirPoly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) nanofibers with the fiber diameter of 100150 nanometers were fabricated by electrospinning. PVA/PAA nanofibers were crosslinked by heat-induced esterification and resulting nanofiber mats insoluble in water. a-Amylase was covalently immobilized onto the PVA/PAA nanofiber surfaces via the activation of amine groups in the presence of 1,1'-carbonyldiimidazole. The immobilized a-amylase has more resistance to temperature inactivation than that of the free form and showed maximum activity at 50 degrees C. pH-dependent activities of the free and immobilized enzymes were also investigated, and it was found that the pH of maximum activity for the free enzyme was 6.5, while for the optimal pH of the immobilized enzyme was 6.0. Reuse studies demonstrated that the immobilized enzyme could reuse 15 times while retaining 81.7% of its activity. Free enzyme lost its activity completely within 15 days. Immobilized enzyme lost only 17.1% of its activity in 30 days. (C) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2012Publication Metadata only Changes in intracellular protein expression in cortex., thalamus and hippocampus in a genetic rat model of absence epilepsy(PERGAMON-ELSEVIER SCIENCE LTD, 2011) OGAN, AYŞE; Danis, Ozkan; Demir, Serap; Gunel, Aslihan; Aker, Rezzan Gulhan; Gulcebi, Medine; Onat, Filiz; Ogan, AyseEpilepsy is a chronic disorder characterized by repeated seizures resulting from abnormal activation of neurons in the brain. Although mutations in genes related to Na+, K+, Ca2+ channels have been defined, few studies show intracellular protein changes. We have used proteomics to investigate the expression of soluble proteins in a genetic rat model of absence epilepsy Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The advantage of this technique is its high throughput quantitative and qualitative detection of all proteins with their post-translational modifications at a given time. The parietal cortex and thalamus, which are the regions responsible for the generation of absence seizures, and the hippocampus, which is not involved in this activity, were dissected from GAERS and from non-epileptic control rat brains. Proteins from each tissue sample were isolated and separated by two-dimensional gel electrophoresis. Spots that showed significantly different levels of expression between controls and GAERS were identified by nano LC-ESI-MS/MS. Identified proteins were: ATP synthase subunit delta and the 14-3-3 zeta isoform in parietal cortex; myelin basic protein and macrophage migration inhibitory factor in thalamus; and macrophage migration inhibitory factor and 0-beta 2 globulin in hippocampus. All protein expressions were up-regulated in GAERS except 0-beta globulin. These soluble proteins are related to energy generation, signal transduction, inflammatory processes and membrane conductance. These results indicate that not only membrane proteins but also cytoplasmic proteins may take place in the pathophysiology and can be therapeutic targets in absence epilepsy. (C) 2011 Elsevier Inc. All rights reserved.Publication Metadata only Immobilization of alpha- amylase on aminated polyimide membrane: Preparation, characterization, and properties(WILEY-V C H VERLAG GMBH, 2014) ÇAKMAKÇI, EMRAH; Cakmakci, Emrah; Cigil, Asli Beyler; Danis, Ozkan; Demir, Serap; Kahraman, Memet Vezir-amylase was covalently immobilized on functionalized polyimide (PI) membranes via glutaraldehyde (GA) activation. 3,3,4,4-Benzophenonetetracarboxylic acid dianhydride (BTDA) and 4,4-oxydianline (4,4-ODA) based polyimide membranes were obtained via thermal imidization. Free amine groups on the surface of the polyimide membranes were generated by the amination reaction of polyimides with hexamethylenediamine (HMDA). Surface-aminated membranes were subjected to enzyme immobilization after GA activation. Immobilization efficiency and enzyme activity of -amylase was examined at various pH (3.0-8.0) and temperature (15-80 degrees C). The storage stability and reusability of immobilized -amylase were investigated. Immobilization yield was found as 359.53mg per gram of modified polyimide films. Enzyme assays demonstrated that the immobilized enzyme exhibited better thermo stability than the free one. The storage stability and reusability improved by the immobilization on this enzyme support. Free enzyme lost its activity completely within 15 days. On the other hand, the immobilized enzyme retained 79.98% of its activity after 30 days. These results confirmed that -amylase was successfully immobilized and gained more stable character compared to the free enzyme.Publication Metadata only Synthesis of selected 3-and 4-arylcoumarin derivatives and evaluation as potent antioxidants(SPRINGER, 2016) DANIŞ, ÖZKAN; Danis, Ozkan; Demir, Serap; Gunduz, Cihan; Alparslan, Mustafa Muhlis; Altun, Selcuk; Yuce-Dursun, BasakA series of hydroxyl-, methoxy-, and acetoxy-substituted 3- and 4-arylcoumarins were synthesized. All title compounds were screened for their antioxidant capacity, ability to scavenge the 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical, and ability to chelate iron ions. Furthermore, all derivatives were assessed using molecular properties prediction and drug likeness using Molinspiration. It was found that all studied derivatives were potential candidates for further research, as they complied with Lipinski's rule of five for drug likeness. 3- or 4-arylcoumarins that possess two hydroxyl groups in ortho position, such as 4h, 5b, h, and 6a, had remarkable half-maximal effective concentration (EC50) for radical scavenging, with better performance than known antioxidants in DPPH and metal-chelating assays. In addition, the cupric-reducing antioxidant capacity and ferric-reducing antioxidant power of the synthesized compounds were investigated for antioxidant activity. Among them, 5g, h and 6a, b showed significantly better Trolox equivalent antioxidant capacity (TEAC) than standard compounds. The results demonstrate that the compounds with dihydroxyl groups at 6- and 7-positions of the benzopyrone ring of the arylcoumarin structure are the most active of the series as antioxidants. On the basis of these findings, these new coumarin derivatives are potential therapeutic candidates for pathogenesis of many diseases characterized by free-radical overproduction.