Person:
DEMİR, SERAP

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

DEMİR

First Name

SERAP

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    In vitro and in silico investigation of inhibitory activities of 3-arylcoumarins and 3-phenylazo-4-hydroxycoumarin on MAO isoenzymes
    (2022-11-01) DANIŞ, ÖZKAN; DEMİR, SERAP; ERDEM, SAFİYE; OGAN, AYŞE; Yuce-Dursun B., DANIŞ Ö., Ozalp L., Sahin E., DEMİR S., ERDEM S., OGAN A.
    A series of 3-aryl coumarin derivatives and 3-phenylazo-4-hydroxycoumarin were evaluated for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity by fluorometric enzymological assays. Among 21 coumarin derivatives, compound 21 (3-phenylazo-4-hydroxycoumarin) displayed a good inhibitory activity (0.12 +/- 0.02 mu M) and very high selectivity for MAO-B (SI > 833.33). The inhibition was determined as mixed-type and not time-dependent. Docking studies, molecular dynamics and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculations were performed to elucidate in vitro results. Our results reveal that the insertion of an azo linker between coumarin and phenyl rings in 3-arylcoumarins enhances MAO-B selectivity enormously since such a linker leads to the perfect alignment of the coumarin ring in the aromatic cage and the phenyl ring in the entrance cavity of MAO-B active site. Hydrogen bond interactions with Cys172 in the active site entrance of MAO-B also contributes to the remarkably higher inhibitory activity and selectivity for MAO-B.
  • PublicationOpen Access
    Poly(lactic acid) nanofibers containing phosphorylcholine grafts for transdermal drug delivery systems
    (2022-06-01) OKTAY, BURCU; DEMİR, SERAP; KAYAMAN APOHAN, NİLHAN; OKTAY B., Eroglu G. O., DEMİR S., KURUCA D. S., KAYAMAN APOHAN N.
    The continuous and prolonged releases of chemotherapeutic drugs are required for successful treatment in cancer treatment. The project focused on a new material design to meet this requirement. We developed a constant and sustained release system and investigated the release profiles of Paclitaxel (PTX). Polylactic acid (PLA) nanofiber surface was grafted with poly (methacryloyloxyethyl phosphorylcholine) (PMPC) by the UV-induced grafting method. The morphological structure of the PLA nanofibers did not change with an increase in the MPC content. PMPC blocks contribute to the solubility of PTX, which shows low resolution. When the amount of MPC is 5%, the PTX loading efficiency increased two times compared with PLA nanofiber. The nanofiber mats exhibited an initial fast release during the first 3 h. Endothelial cells were cultured on nanofiber mats to investigate whether this material was toxic or not. The mats showed good biocompatibility with HUVEC. Thus, it was confirmed that nanofiber mats would not be toxic when releasing drugs during in vivo use. We think that PMPC facilitates the pass of drugs through the lipid-rich biological membrane and so anticancer drugs can be delivered to direct tumor sites. (C) 2022 Elsevier Ltd. All rights reserved.
  • PublicationOpen Access
    Design, synthesis and biological evaluation of novel benzocoumarin derivatives as potent inhibitors of MAO-B activity
    (2024-11-15) MELETLİ, FURKAN; DEMİR, SERAP; DANIŞ, ÖZKAN; MELETLİ F., Gündüz C., Alparslan M. M., ATTAR A., DEMİR S., İskit E., DANIŞ Ö.
    The continued research of novel reversible inhibitors targeting monoamine oxidase (MAO) B remains crucial for effectively symptomatic treatment of Parkinson\"s disease. In this study we synthesized and evaluated a new series of 3-aryl benzo[g] and benzo[h] coumarin derivatives as MAO-B inhibitors. Compound A6 has been found to display the most potent inhibitory activity and selectivity against the MAO-B isoform (IC50 = 13 nM and SI = >7693.31 respectively). Inhibition mode of A6 on MAO-B was predicted as mixed reversible inhibition with a Ki value of 3.274 nM. Furthermore, in order to elaborate structure–activity relationships, the binding mode of A6 was investigated by molecular docking simulations.