Person: ÇAKMAKÇI, EMRAH
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ÇAKMAKÇI
First Name
EMRAH
Name
4 results
Search Results
Now showing 1 - 4 of 4
Publication Metadata only Preparation, characterization, and in vitro evaluation of isoniazid and rifampicin-loaded archaeosomes(WILEY, 2018) OGAN, AYŞE; Attar, Azade; Bakir, Ceren; Yuce-Dursun, Basak; Demir, Serap; Cakmakci, Emrah; Danis, Ozkan; Birbir, Meral; Ogan, AyseThe ability of Archaea to adapt their membrane lipid compositions to extreme environments has brought in archaeosomes into consideration for the development of drug delivery systems overcoming the physical, biological blockades that the body exhibits against drug therapies. In this study, we prepared unilamellar archaeosomes, from the polar lipid fraction extracted from Haloarcula 2TK2 strain, and explored its potential as a drug delivery vehicle. Rifampicin and isoniazid which are conventional drugs in tuberculosis medication were loaded separately and together in the same archaeosome formulation for the benefits of the combined therapy. Particle size and zeta potential of archaeosomes were measured by photon correlation spectroscopy, and the morphology was assessed by with an atomic force microscope. Encapsulation efficiency and loading capacities of the drugs were determined, and in vitro drug releases were monitored spectrophotometrically. Our study demonstrates that rifampicin and isoniazid could be successfully loaded separately and together in archaeosomes with reasonable drug-loading and desired vesicle-specific characters. Both of the drugs had greater affinity for archaeosomes than a conventional liposome formulation. The results imply that archaeosomes prepared from extremely halophilic archaeon were compatible with the liposomes for the development of stable and sustained release of antituberculosis drugs.Publication Metadata only Alpha-Amylase Immobilization on Epoxy Containing Thiol-Ene Photocurable Materials(KOREAN SOC MICROBIOLOGY & BIOTECHNOLOGY, 2013) ÇAKMAKÇI, EMRAH; Cakmakci, Emrah; Danis, Ozkan; Demir, Serap; Mulazim, Yusuf; Kahraman, Memet VezirThiol-ene polymerization is a versatile tool for several applications. Here we report the preparation of epoxide groups containing thiol-ene photocurable polymeric support and the covalent immobilization of alpha-amylase onto these polymeric materials. The morphology of the polymeric support was characterized by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) coupled with SEM was used to explore the chemical composition. The polymeric support and the immobilization of the enzyme were characterized by FTIR analysis. SEM-EDS and FTIR results showed that the enzyme was successfully covalently attached to the polymeric support. The immobilization efficiency and enzyme activity of alpha-amylase were examined at various pH (5.0-8.0) and temperature (30-80 degrees C) values. The storage stability and reusability of immobilized alpha-amylase were investigated. The immobilization yield was 276 +/- 1.6 mg per gram of polymeric support. Enzyme assays demonstrated that the immobilized enzyme exhibited better thermostability than the free one. The storage stability and reusability were improved by the immobilization on this enzyme support. Free enzyme lost its activity completely within 15 days. On the other hand, the immobilized enzyme retained 86.7% of its activity after 30 days. These results confirm that alpha-amylase was successfully immobilized and gained a more stable character compared with the free one.Publication Metadata only Immobilization of alpha- amylase on aminated polyimide membrane: Preparation, characterization, and properties(WILEY-V C H VERLAG GMBH, 2014) ÇAKMAKÇI, EMRAH; Cakmakci, Emrah; Cigil, Asli Beyler; Danis, Ozkan; Demir, Serap; Kahraman, Memet Vezir-amylase was covalently immobilized on functionalized polyimide (PI) membranes via glutaraldehyde (GA) activation. 3,3,4,4-Benzophenonetetracarboxylic acid dianhydride (BTDA) and 4,4-oxydianline (4,4-ODA) based polyimide membranes were obtained via thermal imidization. Free amine groups on the surface of the polyimide membranes were generated by the amination reaction of polyimides with hexamethylenediamine (HMDA). Surface-aminated membranes were subjected to enzyme immobilization after GA activation. Immobilization efficiency and enzyme activity of -amylase was examined at various pH (3.0-8.0) and temperature (15-80 degrees C). The storage stability and reusability of immobilized -amylase were investigated. Immobilization yield was found as 359.53mg per gram of modified polyimide films. Enzyme assays demonstrated that the immobilized enzyme exhibited better thermo stability than the free one. The storage stability and reusability improved by the immobilization on this enzyme support. Free enzyme lost its activity completely within 15 days. On the other hand, the immobilized enzyme retained 79.98% of its activity after 30 days. These results confirmed that -amylase was successfully immobilized and gained more stable character compared to the free enzyme.Publication Metadata only Preparation of poly(3-hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery(SPRINGER JAPAN KK, 2015) OGAN, AYŞE; Danis, Ozkan; Ogan, Ayse; Tatlican, Pinar; Attar, Azade; Cakmakci, Emrah; Mertoglu, Bulent; Birbir, MeralHalophilic archaea offer a potential source for production of polyhydroxyalkanoates (PHAs). Hence, the experiments were carried out with five extremely halophilic archaeal isolates to determine the highest PHA-producing strain. PHA production of each isolates was separately examined in cheap carbon sources such as corn starch, sucrose, whey, apple, melon and tomato wastes. Corn starch was found to be a fairly effective substrate for PHA production. Among the strains studied here, the strain with the highest capability for PHA biosynthesis was found to be 1KYS1. Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that 1KYS1 closely related to species of the genus Natrinema. The closest phylogenetic similarity was with the strain of Natrinema pallidum JCM 8980 (99 %). PHA content of 1KYS1 was about 53.14 % of the cell dry weight when starch was used as a carbon source. The formation of large and uniform PHA granules was confirmed by transmission electron microscopy and the biopolymer was identified as poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV). PHBV produced by 1KYS1 was blended with low molar mass polyethylene glycol (PEG 300) to prepare biocompatible films for drug delivery. Rifampicin was used as a model drug and its release from PHBV films was investigated at pH 7.4, 37 A degrees C. It was found that PHBV films obtained from 1KYS1 were very effective for drug delivery. In conclusion, PHBV of 1KYS1 may have a potential usage in drug delivery applications.