Person: ÇAKMAKÇI, EMRAH
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ÇAKMAKÇI
First Name
EMRAH
Name
11 results
Search Results
Now showing 1 - 10 of 11
Publication Open Access Eugenol-DOPO: A bio-based phosphorous-containing monomer for thiol-ene photocurable thermosets(2023-01-01) ÇAKMAKÇI, EMRAH; Özükanar Ö., ÇAKMAKÇI E., Sagdic G., Günay U. S., Durmaz H., Kumbaracı İ. V.The adverse health and environmental effects of petroleum-based materials have become a driving force for the fabrication of bio-based monomers. In this study, we synthesized a novel bio-based reactive phosphorus-containing; eugenol-DOPO, which was prepared in one step by the reaction of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and eugenol via Atherton–Todd reaction. Moreover, a diallyl compound was also prepared by using eugenol and piperazine. All monomers were characterized by nuclear magnetic resonance (NMR), mass, and Fourier-transform infrared (FTIR) spectroscopies. Thiol-ene photocured polysulfide thermoset networks were prepared by using these newly synthesized bio-based monomers. Thermal and thermomechanical properties of the thermosets were measured. Photo-crosslinked networks displayed over 88% gel content values. The thermal stability of the networks as well as the resulting char yields were improved as the percentage of eugenol-DOPO was increased in the formulations. The presence of N and P played a synergistic effect and the limiting oxygen index (LOI) values for the thermoset materials were enhanced. We believe eugenol-DOPO is not only a good alternative monomer for the preparation of thermally stable photocurable thermosets, but it is also a suitable bio-based additive for other polymers as well. Graphical Abstract: [Figure not available: see fulltext.].Publication Open Access Metal-free click modification of triple bond-containing polyester with azide-functionalized vegetable oil: plasticization and tunable solvent adsorption(2022-07-12) ÇAKMAKÇI, EMRAH; Cangul K., ÇAKMAKÇI E., Daglar O., Günay U. S., Hızal G., Tunca Ü., Durmaz H.Pressure from environmental nongovernmental organizations and the public has accelerated research on the development of innovative and renewable polymers and additives. Recently, biobased \"green\" plasticizers that can be covalently attached to replace toxic and migratory phthalate-based plasticizers have gained a lot of attention from researchers. In this work, we prepared an azide-functionalized soybean oil derivative (AzSBO) and investigated whether it can be used as a plasticizer. We covalently attached AzSBO to an electron-deficient triple-bond-containing polyester via a metal-free azide-alkyne click reaction. The thermal, mechanical, and solvent absorption behaviors of different amounts of azidated oil-containing polyesters were determined. Moreover, the plasticization efficiency of AzSBO was compared with the commercial plasticizers bis(2-ethylhexyl) phthalate and epoxidized soybean oil. At relatively lower AzSBO ratios, the degree of cross-linking was higher and thus the plasticization was less pronounced but the solvent resistance was significantly improved. As the ratio of AzSBO was increased, the glass transition temperature of the pristine polymer decreased up to 31 degrees C from 57 degrees C. Furthermore, the incorporation of AzSBO also improved the thermal properties and 20% AzSBO addition led to a 60 degrees C increase in the maximum weight loss temperature.Publication Open Access Thermal and mechanical properties of thiol-ene photocured thermosets containing DOPO-based liquid reactive flame retardant synthesized by metal-free azide-alkyne click reaction(2022-06-01) ÇAKMAKÇI, EMRAH; Sagdic G., ÇAKMAKÇI E., Daglar O., Günay U. S., Hızal G., Tunca Ü., Durmaz H.The use of metal-free click reactions for the design and synthesis of novel flame retardant reactive monomers for thiol-ene photopolymerization is an intriguing area of research. In this study, we have prepared a new, 9,10-dihy-dro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-based, P-and N-containing reactive flame retardant via the metal-free azide-alkyne click reaction. For this purpose, first, azide-functionalized DOPO (DOPO-N-3) has been synthesized via Atherton-Todd reaction, and then this compound has been reacted with acetylene dicar-boxylic acid diallyl ester (ACDAE) to give the flame retardant monomer, namely DOPO-triazole diallyl ester (DTDAE). As prepared flame retardant monomer was characterized by nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) spectroscopies. Thermoset materials prepared by using DTDAE displayed over 90% gel content values. Polar triazole and phosphorous units rendered the surface of the ther-mosets hydrophilic. The thermal stability of the networks was enhanced, char yields increased and the glass transition temperatures (T(g)s) were increased. The limiting oxygen index (LOI) values of the crosslinked materials increased up to 27.8% as the DTDAE content was increased in the formulations. The synthetic method described in this study provides a practical approach for the synthesis of a P-and N-containing flame retardant through a metal-free azide-alkyne click reaction Also, the fact that DTDAE is in a liquid state makes this study valuable as it indicates that it can be easily dispersed. It is also believed this promising compound can be used in different polymer structures and formulations to develop new flame retardants in future studies to be applied in industrial applications.Publication Open Access Immobilization of acetylcholinesterase onto pyrrole-containing photocured thermosets(2023-04-01) DEMİR, SERAP; ÇAKMAKÇI, EMRAH; OGAN, AYŞE; ALI K. K., DEMİR S., ÇAKMAKÇI E., OGAN A.Acetylcholinesterase (AChE; EC 3.1.1.7) is a group of enzymes that catalyzes the hydrolysis of the neurotransmitter acetylcholine (ACh) into choline and acetate. AChE inhibition is commonly utilized as a biomarker for pesticides. In membrane based AChE biosensors the enzyme immobilization onto an electrode surface is of prime importance. In previous studies, conducting polymers-based supports have been used for the immobilization of AChE. In this study, a novel immobilization platform was developed. The simultaneous polymerization of pyrrole and functional thiol/ene monomers was performed to prepare conductive thermosets. AchE was covalently immobilized onto the membranes through the epoxy functional groups. After the immobilization process, the optimal temperature increased to 50 °C, displaying a better thermal stability and the optimum pH was elevated to 8.5. The activity of the immobilized enzyme was tested in the presence of several metals, and it was found that Cu2+ ions caused a noticable inhibition. After 10 cycles, the immobilized enzyme retained 51% of its original activity. In accordance with our results; the durability and the stability of the immobilized enzyme were improved. In future studies, the method applied here can be used in the design of an AchE biosensor.Publication Open Access Thiol-ene photopolymerization meets azide-alkyne click reactions: P/N/Si-containing, dual curable eugenol-based hybrid coatings(2023-08-17) ÇAKMAKÇI, EMRAH; Özükanar Ö., ÇAKMAKÇI E., Daglar O., Durmaz H., Kumbaracı İ. V.The use of bio-based building blocks for the synthesis of polymers is increasing day by day. Among the bio-based building blocks, eugenol is a highly promising monomer for the preparation of thermoset materials. In this study, we combined thiol-ene photopolymerization (TEP) and thermal azide-alkyne cycloaddition click reactions to prepare eugenol-based thermally stable, P-, N-, and Si-containing networks. To this end, we synthesized a P-containing, eugenol-based monomer bearing azide group and a siloxane compound containing an alkyne group. By mixing these monomers with multifunctional thiols and by utilizing a dual-curing strategy, we managed to obtain optically transparent and thermally stable coatings with excellent adhesion to glass substrates. Thermal stability, optical transmittance, pendulum hardness, solvent resistance, and the adhesion performance of the coatings were evaluated. The gel contents of the thermoset materials were found to be over 95%. At 600 °C, the char yields of the dual-cured coatings were found to be over 30%. Coatings were also found to be resistant to acidic and basic conditions as well as solvents.Publication Open Access Propiolated castor oil: A novel and highly versatile bio-based platform for extremely fast, catalyst-, and solvent-free amino-yne click reactions(2023-01-01) ÇAKMAKÇI, EMRAH; Celik B., Kandemir D., Lüleburgaz S., ÇAKMAKÇI E., Günay U. S., Kumbaracı İ. V., Durmaz H.The quest for sustainable monomers and \"green\" synthetic pathways for the design, fabrication, and modification of various polymers is of great importance and attracts a great deal of attention. Here, a highly versatile and novel bio-based platform was developed by reacting castor oil with propiolic acid for performing amino-yne click reactions. Owing to the electron-deficient nature of the propiolic acid esters, amino-yne click reactions were conducted with ease at room temperature, in the absence of any catalyst and solvent (as long as the amines were low-viscosity liquids at room temperature), and within 5 min. Several primary and secondary amines were shown to react readily with the developed platform. Furthermore, thermosets were prepared by using the propiolated castor oil and multifunctional amines. The prepared thermosets displayed improved thermal properties and elastomer-like mechanical properties.Publication Open Access Thioether functional chain extender for thermoplastic polyurethanes(SPRINGER, 2015-06) ÇAKMAKÇI, EMRAH; Altintas, Zerrin; Cakmakci, Emrah; Kahraman, M. Vezir; Kayaman-Apohan, NilhanIn this study, a novel three functional chain extender (TATATRIOL) was synthesized from the reaction of 1,3,5-tri(prop-2-en-1-yl)-1,3,5-triazinane-2,4,6-trione (TATA) with 2-sulfanylethanol. Then new thermoplastic polyurethanes (TPUs) were synthesized by a one-step bulk polymerization from the reaction of 1,1'-methanediylbis(4-isocyanatocyclohexane) (H12MDI), a poly(ethylene adipate) based polyester polyol and a chain extender. Butane-1,4-diol (BD) and the newly synthesized monomer, TATATRIOL, were used as chain extenders. The effects of TATATRIOL on the properties of the TPU were investigated and compared to those of the TPU prepared with BD. The TPUs which derived from the sulfur containing chain extender displayed lower modulus and high elongation at break values than the analogous TPUs derived from BD. Moreover sulfur containing TPUs exhibited higher thermal stability.Publication Open Access Vegetable oil-based, coumarin-containing antibacterial thermosets with improved thermal stability via copper-free thermal azide-alkyne click polymerization(2022-08-01) ÇAKMAKÇI, EMRAH; ÖZDEMİR, MÜCAHİT; YALÇIN, BAHATTİN; ÇAKMAKÇI E., Ozdemir M., Sen F., Bulut M., YALÇIN B.In recent years, the preparation of thermoset materials based on renewable sources has received peculiar attention. In this work, we prepared vegetable oil based antibacterial thermosets via thermal azide-alkyne cycloaddition reactions. Dimer diamine was propargylated and mixed with azidated trimethylolpropane triglycidyl ether and castor oil bearing azide and phosphorous groups. Two different propargyl functionalized marins were also incorporated into the vegetable oil based formulations. All synthesized monomers characterized by Fourier-transform infrared (FTIR) and Nuclear magnetic resonance (NMR) spectroscopy. chanical, thermal and antibacterial properties of the obtained thermosets were also determined. The thermosets behaved as elastomers and displayed elongation at break values between 39% and 82%. The phosphorylated castor oil derivative improved the thermal properties and char yields as high as 13.83% at 750 ? were observed under nitrogen atmosphere. Coumarin-containing thermosets were found to have antibacterial activity against both gram-positive and gram-negative bacteria.Publication Open Access Recent advances in flame retardant polymers via thiol-ene click chemistry(2023-01-01) ÇAKMAKÇI, EMRAH; ÇAKMAKÇI E.Within the toolbox of click chemistry, the utilization of thiol-ene reactions for polymer synthesis and modification is a current area of intense attention. Thiol-ene click reactions are used for a broad range of applications. One main area that needs particular attention, where thiol-ene click reactions are immensely employed, is the fabrication of coatings. Especially, when light is used to trigger the thiol-ene reactions, coatings can be prepared within seconds. This method is known as thiol-ene photopolymerization (TEP) and it is a marvelous advancement among light-induced crosslinking systems. TEP is a powerful tool for the preparation of coatings. The synthesis of phosphorous monomers for TEP has prominent importance for improved thermal properties and flame retardancy. Here, the existing literature on flame retardant TEP systems and reactive phosphorous monomers used in TEP are summarized. This review mainly highlights the studies on thermosets yet some linear polymer examples are also included. While this mini-review focuses mostly on TEP, relevant works involving other thiol-ene polymerization routes (i.e. thermal thiol-ene polymerization) rather than photopolymerization are presented. Finally, studies that utilize thiol-ene click reactions to synthesize phosphorous monomers and flame retardants are also given.Publication Open Access Facile Modification of Propiolated Castor Oil via Nucleophilic Thiol-Yne Click Reactions(2024-01-01) ÇAKMAKÇI, EMRAH; Kalayci D., Akar E., Lüleburgaz S., ÇAKMAKÇI E., Günay U. S., Kumbaracı İ. V., Durmaz H., Tunca Ü.The combination of modern click protocols and bio-based building blocks is a great step toward energy-efficient, and sustainable polymer production. Herein, thiol-Michael addition (thiol-yne) reactions from the toolbox of click chemistry protocols are chosen and propiolated castor oil (PCO) is used, a vegetable oil derivative, as the bio-based building block for the facile functionalization of PCO with various thiols. In addition to the functionalization of PCO, hyperbranched and crosslinked polymers are also prepared. The thiol-yne click functionalization reactions of the PCO are conducted at room temperature within 5 min and in the presence of an organic catalyst. The yields are found to change between 80% and 99% depending on the type of the thiol compound. The effect of various organic catalysts is investigated, and 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) is found to be the most effective catalyst for the thiol-yne modification reactions. The hyperbranched polymer reaches 23.8 kDa (Mw) within 5 min. The findings of this paper open up new horizons for polymer researchers who work in the field of sustainable polymers and click chemistry and the presented idea here is appealing because it offers a potential strategy for fast, reliable, modular, and functional macromolecule preparation from renewable vegetable oils.