Person:
AKBAY, TUĞBA

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

AKBAY

First Name

TUĞBA

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationOpen Access
    The effect of whey proteins on the brain and small intestine nitric oxide levels: protein profiles in methotrexate-induced oxidative stress
    (2022-12-01) ÖZBEYLİ, DİLEK; AKBAY, TUĞBA; YILMAZ KARAOĞLU S., Tufan E., Sivas G. G., Gürel Gökmen B., Dursun E., ÖZBEYLİ D., ŞENER G., AKBAY T.
    Objectives: The aim of this study was to determine the effects of whey proteins on methotrexate (MTX)-induced brain and small intestine damage. Materials and Methods: 30 Sprague Dawley rats (200-300 g) were divided into four groups: Control, control + whey, MTX, and MTX+whey. MTX was administered at 20 mg/kg (single dose) intraperitoneally to the MTX group rats, and 2 mg/kg of whey protein were administered by oral gavage for 10 days to the whey groups. Lipid peroxidation, glutathione, and nitric oxide (NO) levels, as well as glutathione-Stransferase and superoxide dismutase activities were measured in the brain and small intestine. SDS-polyacrylamide gel electrophoresis of the brain and intestine tissues were also carried out. Results: While MTX treatment caused oxidative damage in the brain and small intestine, whey protein administration ameliorated MTXinduced oxidative stress. MTX administration did not change the brain’s NO level, while an increase in intestinal NO level was detected. Conclusion: MTX induced oxidative stress in the brain and small intestine changed the protein metabolism in these tissues regardless of reduced food intake. Consecutive 10-day administration of whey proteins has shown its therapeutic effect on MTX-induced brain and small intestine oxidative damage
  • PublicationOpen Access
    Edaravone Ameliorates Valproate-Induced Gingival Toxicity by Reducing Oxidative-Stress, Inflammation and Tissue Damage
    (MARMARA UNIV, FAC MEDICINE, 2016-05-10) YARAT, AYŞEN; Oktay, Sehkar; Alev, Burcin; Koc Ozturk, Leyla; Tunali, Sevim; Demirel, Sezin; Emekli Alturfan, Ebru; Tunali-Akbay, Tugba; Akyuz, Serap; Yanardag, Refiye; Yarat, Aysen
    Valproic acid (2-n-propylpentanoic acid, VPA), the most widely used antiepileptic drug, has potential adverse effects and it can disrupt the oxidant and antioxidant balance. Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one, EDA) is a potent free radical scavenger. In this study, the effect of EDA on gingiva in VPA induced toxicity was investigated. Female Sprague Dawley rats were randomly divided into four groups: control group, EDA (30 mg/kg/day) given group, VPA (0.5 g/kg/day) given group, and VPA+EDA (in same dose and time) given group. EDA and VPA were given intraperitoneally for seven days. Total protein, lipid peroxidation (LPO), sialic acid (SA) and reduced glutathione (GSH) levels and catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), myeloperoxidase (MPO), alkaline phosphatase (ALP), acid phosphatase (ACP), sodium potassium ATPase (Na+/K+-ATPase) and tissue factor (TF) activities were determined in gingiva homogenates. The VPA-induced increases were statistically significant for MPO (p<0.01), ACP (p<0.01), Na+/K+-ATPase (p<0.05) and TF (p<0.01) activities, but not for LPO level and ALP activities. EDA treatment markedly blunted all such elevated anomalies. Conclusively, VPA induced oxidative and inflammatory gingival tissue damage, reactions that were appreciably reversed by concurrent administration of EDA.
  • Publication
    Melatonin improves hyperglycemia induced damages in rat brain
    (WILEY, 2018) YARAT, AYŞEN; Gurel-Gokmen, Begum; Ipekci, Hazal; Oktay, Sehkar; Alev, Burcin; Ustundag, Unsal Veli; Ak, Esin; Akakin, Dilek; Sener, Goksel; Emekli-Alturfan, Ebru; Yarat, Aysen; Tunali-Akbay, Tugba
    Background Diabetes mellitus is an endocrine disorder which is characterized by the development of resistance to the cellular activity of insulin or inadequate insulin production. It leads to hyperglycemia, prolonged inflammation, and oxidative stress. Oxidative stress is assumed to play an important role in the development of diabetic complications. Melatonin is the hormone that interacts with insulin in diabetes. Therefore, in this study, the effects of melatonin treatment with or without insulin were examined in diabetic rat brain. Methods Results Rats were divided into five groups as control, diabetes, diabetes + insulin, diabetes + melatonin, and diabetes + melatonin + insulin. Experimental diabetes was induced by streptozotocin (60 mg/kg, i.p.). Twelve weeks after diabetes induction, rats were decapitated. Malondialdehyde, glutathione, sialic acid and nitric oxide levels, superoxide dismutase, catalase, glutathione-S-transferase, myeloperoxidase, and tissue factor activities were determined in brain tissue. Melatonin alone showed its antioxidant effect by increasing brain glutathione level, superoxide dismutase, catalase, and glutathione-S-transferase activities and decreasing malondialdehyde level in experimental diabetes. Although insulin did not have a significant effect on glutathione and glutathione-S-transferase, its effects on lipid peroxidation, superoxide dismutase, and catalase were similar to melatonin; insulin also decreased myolopeoxidase activity and increased tissue factor activity. Combined melatonin and insulin treatment mimicked the effects of insulin. Conclusion Addition of melatonin to the insulin treatment did not change the effects of insulin, but the detailed role of melatonin alone in the treatment of diabetes merits further experimental and clinical investigation.
  • PublicationOpen Access
    Morphological and biochemical investigation of the protective effects of panax ginseng on methotrexate-induced testicular damage
    (2023-06-01) AKBAY, TUĞBA; ERCAN, FERİHA; Karakaya F. B., Macit Ç., Sivas G. G., Akbay T., Şeber G., Ercan F.
    Objective: Methotrexate (MTX) is a chemotherapeutic agent that causes testicular toxicity used in the cure of various types ofcancer. The anti-oxidant and anti-cancer effects of Panax ginseng (PxG) have been reported in both experimental and clinical studies. This study aims to examine the healing effect of PxG on testicular damage induced by MTX.Materials and Methods: Sprague Dawley male rats (8-week-olds) were used in the study. A single dose ofMTXdissolved in saline(20 mg/kg) was given to MTX and MTX+PxG groups by intraperitoneal injection. PxG dissolved in saline (100 mg/kg) was given by orogastric gavage once a day for 5 days to the MTX+PxG group. Saline was given to the control and MTX groups orally during the experiments. After decapitation, the testis sampleswere obtained. Seminiferous tubules and basement membranewere evaluated histopathologically. Seminiferous tubule diameter and germinal epithelium thickness were measured. Furthermore, oxidative stress parameters such as malondialdehyde, glutathione, superoxide dismutase, and glutathione-S-transferase were measured.Results: MTX treatment caused seminiferous tubule degeneration with a decrease in Johnsen’s score, the seminiferous tubule’sdiameter, and the germinal epithelium’s thickness. Parallel with the histopathological results increased testicular oxidative stress with an increase in malondialdehyde level and a decrease of endogenous anti-oxidant activity with a decrease in glutathione level and glutathione-S-transferase and superoxide dismutase activities. PxG treatment improved these histological and biochemical parameters in MTX-induced testis cytotoxicity.Conclusion: MTX treatment causes testicular damage via the oxidative processes. PxG treatment ameliorates MTX-inducedtesticular damage by inhibiting oxidative stress.
  • Publication
    Melatonin reduces oxidative damage to skin and normalizes blood coagulation in a rat model of thermal injury
    (PERGAMON-ELSEVIER SCIENCE LTD, 2005) YARAT, AYŞEN; Tunali, T; Sener, G; Yarat, A; Emekli, N
    This study was designed to determine the effect of melatonin treatment on the glutathione (GSH) and lipid peroxidation (LPO) levels in the skin as well as prothrombin time (PT) and fibrin degradation products (FDPs) in the blood of rats with thermal injury. Under ether anaesthesia, the shaved dorsum of the rats was exposed to 90degreesC bath for 10 s to induce burn injury. Rats were decapitated either 3 or 24 hours after burn injury. Melatonin (10 mg/ kg) was administered i.p. immediately after burn injury to same animals. In the 24 hour burn group, melatonin injections were repeated for two more occasions 8 and 16 h after burn injury. In the control group the same protocol was applied except that the dorsum was exposed to a 25degreesC water bath for 10 s. Severe skin scald injury (30% of total body surface area) caused a significant decrease in PT at post burn 3 and 24 hours. FDPs was not increased at post burn 3 hour but was significantly increased at post burn 24 hour. GSH levels were significantly depressed at post burn 3 hour but were not changed at post burn 24 hour. LPO levels were significantly increased both at post burn 3 and 24 hours. Skin protein levels were significantly reduced at post burn 24 hour as evidenced by electrophoresis. Treatment of rats with melatonin normalized PT levels both at post burn 3 and 24 hours. FDP decreased at post burn 24 hour due to melatonin treatment. GSH levels significantly increased as a result of melatonin treatment both at post burn 3 and 24 hours melatonin treatment. LPO levels were not changed by melatonin at post burn 3 hour; however, the melatonin significantly decreased LPO values at post burn 24 hours. In conclusion, exogenously administered melatonin reduced skin oxidant damage and normalized the activated blood coagulation induced by thermal trauma. (C) 2004 Elsevier Inc. All rights reserved.
  • Publication
    Effect of an Aqueous Garlic Extract on Kidney Damage in an Experimental Model of Sepsis
    (MARMARA UNIV, INST HEALTH SCIENCES, 2017) ŞENER, GÖKSEL; Ipekci, Hazal; Akbay, Tugba Tunali; Sener, Goksel
    Objective: Sepsis is a systemic inflammatory response against pathogens or substances secreted by pathogens. In this study, the potential protective effect of an aqueous garlic extract (AGE) against sepsis-induced kidney injury. Methods: Rats were divided into four groups: control, sepsis, sepsis+AGE-garlic, and sepsis+pretreated garlic. Sepsis was induced using cecal ligation and perforation. An AGE was orally administered to rats in the sepsis+pretreated garlic group at a dose of 250 (mg/kg/day) for 15 days prior to sepsis induction. In rats in the sepsis+garlic group, the AGE was administered at a single dose (250 mg/kg) immediately after sepsis induction. Twelve hours after sepsis induction, all rats were decapitated and kidney tissues were taken. Glutathione (GSH) and malondialdehyde (MDA) levels and superoxide dismutase (SOD), tissue factor (TF), catalase (CAT), and myeloperoxidase (MPO) activities were determined in the kidney issue. Results: Increased MDA levels and MPO activity and decreased GSH level and SOD and CAT activities due to sepsis were reversed by the AGE. TF activity did not change in sepsis. Shortened clot formation time shows increased TF activity. Accordingly, kidney TF activity significantly increased in mice in the pre-treated garlic group. Conclusion: AGE usage should be considered in developing new sepsis treatment strategies in terms of oxidant and antioxidant balance.