Person:
ARĞA, KAZIM YALÇIN

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

ARĞA

First Name

KAZIM YALÇIN

Name

Search Results

Now showing 1 - 5 of 5
  • Publication
    Differential Protein Interactome in Esophageal Squamous Cell Carcinoma Offers Novel Systems Biomarker Candidates with High Diagnostic and Prognostic Performance
    (MARY ANN LIEBERT, INC, 2021) TURANLI, BESTE; Gulfidan, Gizem; Beklen, Hande; Sinha, Indu; Kucukalp, Fulya; Caloglu, Buse; Esen, Ipek; Turanli, Beste; Ayyildiz, Dilara; Arga, Kazim Yalcin; Sinha, Raghu
    Esophageal squamous cell carcinoma (ESCC) is among the most dangerous cancers with high mortality and lack of robust diagnostics and personalized/precision therapeutics. To achieve a systems-level understanding of tumorigenesis, unraveling of variations in the protein interactome and determination of key proteins exhibiting significant alterations in their interaction patterns during tumorigenesis are crucial. To this end, we have described differential protein-protein interactions and differentially interacting proteins (DIPs) in ESCC by utilizing the human protein interactome and transcriptome. Furthermore, DIP-centered modules were analyzed according to their potential in elucidation of disease mechanisms and improvement of efficient diagnostic, prognostic, and treatment strategies. Seven modules were presented as potential diagnostic, and 16 modules were presented as potential prognostic biomarker candidates. Importantly, our findings also suggest that 30 out of the 53 repurposed drugs were noncancer drugs, which could be used in the treatment of ESCC. Interestingly, 25 of these, proposed as novel drug candidates here, have not been previously associated in a context of esophageal cancer. In this context, risperidone and clozapine were validated for their growth inhibitory potential in three ESCC lines. Our findings offer a high potential for the development of innovative diagnostic, prognostic, and therapeutic strategies for further experimental studies in line with predictive diagnostics, targeted prevention, and personalization of medical services in ESCC specifically, and personalized cancer care broadly.
  • PublicationOpen Access
    Drug Repositioning for P-Glycoprotein Mediated Co-Expression Networks in Colorectal Cancer
    (FRONTIERS MEDIA SA, 2020-08-13) TURANLI, BESTE; Beklen, Hande; Gulfidan, Gizem; Arga, Kazim Yalcin; Mardinoglu, Adil; Turanli, Beste
    Colorectal cancer (CRC) is one of the most fatal types of cancers that is seen in both men and women. CRC is the third most common type of cancer worldwide. Over the years, several drugs are developed for the treatment of CRC; however, patients with advanced CRC can be resistant to some drugs. P-glycoprotein (P-gp) (also known as Multidrug Resistance 1, MDR1) is a well-identified membrane transporter protein expressed by ABCB1 gene. The high expression of MDR1 protein found in several cancer types causes chemotherapy failure owing to efflux drug molecules out of the cancer cell, decreases the drug concentration, and causes drug resistance. As same as other cancers, drug-resistant CRC is one of the major obstacles for effective therapy and novel therapeutic strategies are urgently needed. Network-based approaches can be used to determine specific biomarkers, potential drug targets, or repurposing approved drugs in drug-resistant cancers. Drug repositioning is the approach for using existing drugs for a new therapeutic purpose; it is a highly efficient and low-cost process. To improve current understanding of the MDR-1-related drug resistance in CRC, we explored gene co-expression networks around ABCB1 gene with different network sizes (50, 100, 150, 200 edges) and repurposed candidate drugs targeting the ABCB1 gene and its co-expression network by using drug repositioning approach for the treatment of CRC. The candidate drugs were also assessed by using molecular docking for determining the potential of physical interactions between the drug and MDR1 protein as a drug target. We also evaluated these four networks whether they are diagnostic or prognostic features in CRC besides biological function determined by functional enrichment analysis. Lastly, differentially expressed genes of drug-resistant (i.e., oxaliplatin, methotrexate, SN38) HT29 cell lines were found and used for repurposing drugs with reversal gene expressions. As a result, it is shown that all networks exhibited high diagnostic and prognostic performance besides the identification of various drug candidates for drug-resistant patients with CRC. All these results can shed light on the development of effective diagnosis, prognosis, and treatment strategies for drug resistance in CRC.
  • PublicationOpen Access
    Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning
    (ELSEVIER SCIENCE BV, 2019-04) TURANLI, BESTE; Turanli, Beste; Zhang, Cheng; Kim, Woonghee; Benfeitas, Rui; Uhlen, Mathias; Arga, Kazim Yalcin; Mardinoglu, Adil
    Background: Genome-scale metabolic models (GEMs) offer insights into cancer metabolism and have been used to identify potential biomarkers and drug targets. Drug repositioning is a time-and cost-effective method of drug discovery that can be applied together with GEMs for effective cancer treatment. Methods: In this study, we reconstruct a prostate cancer (PRAD)-specific GEM for exploring prostate cancer metabolism and also repurposing new therapeutic agents that can be used in development of effective cancer treatment. We integrate global gene expression profiling of cell lines with >1000 different drugs through the use of prostate cancer GEM and predict possible drug-gene interactions. Findings: We identify the key reactions with altered fluxes based on the gene expression changes and predict the potential drug effect in prostate cancer treatment. We find that sulfamethoxypyridazine, azlocillin, hydroflumethiazide, and ifenprodil can be repurposed for the treatment of prostate cancer based on an in silico cell viability assay. Finally, we validate the effect of ifenprodil using an in vitro cell assay and show its inhibitory effect on a prostate cancer cell line. Interpretation: Our approach demonstate how GEMs can be used to predict therapeutic agents for cancer treatment based on drug repositioning. Besides, it paved a way and shed a light on the applicability of computational models to real-world biomedical or pharmaceutical problems. (C) 2019 The Authors. Published by Elsevier B.V.
  • Publication
    Systems biomarkers in psoriasis: Integrative evaluation of computational and experimental data at transcript and protein levels
    (ELSEVIER SCIENCE BV, 2018) TURANLI, BESTE; Sevimoglu, Tuba; Turanli, Beste; Bereketoglu, Ceyhun; Arga, Kazim Yalcin; Karadag, Ayse Serap
    Psoriasis is a complex autoimmune disease with multiple genes and proteins being involved in its pathogenesis. Despite the efforts performed to understand mechanisms of psoriasis pathogenesis and to identify diagnostic and prognostic targets, disease-specific and effective biomarkers were still not available. This study is compiled regarding clinical validation of computationally proposed biomarkers at gene and protein expression levels through qRT-PCR and ELISA techniques using skin biopsies and blood plasma. We identified several gene and protein clusters as systems biomarkers and presented the importance of gender difference in psoriasis. A gene cluster comprising of P13, IRF9, IFIT1 and NMI were found as positively correlated and differentially co-expressed for women, whereas SUB1 gene was also included in this cluster for men. The differential expressions of IRF9 and NMI in women and SUB1 in men were validated at gene expression level via qRT-PCR. At protein level, PI3 was abundance in disease states of both genders, whereas PC4 protein and WIF1 protein were significantly higher in healthy states than disease states of male group and female group, respectively. Regarding abundancy of PI3 and WIF1 proteins in women, and PI3 and PC4 in men may be assumed as systems biomarkers at protein level.
  • Publication
    Acute myeloid leukemia: New multiomics molecular signatures and implications for systems medicine diagnostics and therapeutics innovation
    (2022-07-01) ARĞA, KAZIM YALÇIN; TURANLI, BESTE; YILMAZ, BETÜL; Kelesoglu N., Kori M., TURANLI B., ARĞA K. Y., Yilmaz B., Duru O. A.
    Acute myeloid leukemia (AML) is a common, complex, and multifactorial malignancy of the hematopoietic system. AML diagnosis and treatment outcomes display marked heterogeneity and patient-to-patient variations. To date, AML-related biomarker discovery research has employed single omics inquiries. Multiomics analyses that reconcile and integrate the data streams from multiple levels of the cellular hierarchy, from genes to proteins to metabolites, offer much promise for innovation in AML diagnostics and therapeutics. We report, in this study, a systems medicine and multiomics approach to integrate the AML transcriptome data and reporter biomolecules at the RNA, protein, and metabolite levels using genome-scale biological networks. We utilized two independent transcriptome datasets (GSE5122, GSE8970) in the Gene Expression Omnibus database. We identified new multiomics molecular signatures of relevance to AML: miRNAs (e.g., mir-484 and miR-519d-3p), receptors (ACVR1 and PTPRG), transcription factors (PRDM14 and GATA3), and metabolites (in particular, amino acid derivatives). The differential expression profiles of all reporter biomolecules were crossvalidated in independent RNA-Seq and miRNA-Seq datasets. Notably, we found that PTPRG holds important prognostication potential as evaluated by Kaplan-Meier survival analyses. The multiomics relationships unraveled in this analysis point toward the genomic pathogenesis of AML. These multiomics molecular leads warrant further research and development as potential diagnostic and therapeutic targets.