Person: YILDIRIM, ALPER
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
YILDIRIM
First Name
ALPER
Name
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access Investigation of UWB-IMU sensor fusion for indoor navigation with DoE(2023-01-01) DEMİR, UĞUR; AKGÜN, GAZİ; YILDIRIM, ALPER; Durmus S., DEMİR U., AKGÜN G., YILDIRIM A.This study presents an evaluation of the optimal parameter configuration for Ultra-Wide Band (UWB) - Inertial Measurement Units - (IMU) based sensor fusion for indoor localization in Non-Line-of-Sight (NLOS) environments. The study employs the least squares method to predict position using UWB technology. Subsequently, sensor fusion techniques combining UWB and IMU are employed, utilizing the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) algorithms to enhance position estimation. To mitigate the effects of noise in IMU data, a high-pass filter is applied before feeding the data into the EKF and UKF. The experimental findings are then evaluated using Design of Experiment (DoE) techniques, and the optimal parameter configurations are analysed using linear regression. This study provides insight into the parameter settings that yield improved accuracy and robustness in UWB-IMU sensor fusion for indoor localization in NLOS scenarios.Publication Open Access EMG sinyallerinin derin öğrenme ile hareket sınıflandırması(2022-09-18) AKGÜN, GAZİ; YILDIRIM, ALPER; DEMİR, UĞUR; KAPLANOĞLU, ERKAN; Akgün G., Yıldırım A., Demir U., Kaplanoğlu E.Bu çalışmada EMG sinyalleri üzerinde öznitelikler hesaplanmıştır. Bu öznitelikler ile el hareketlerini sınıflandırmak için derin öğrenme algoritmaları kullanılmıştır. Bir zaman serisi olarak toplanan EMG sinyalleri üzerinde zaman alanında hesaplanan öznitelik vektörleri belirli boyutlarda simetrik matrisler olarak kaydedilmiştir. Yeniden oluşturulan ve resim dosyası formatında kaydedilen veri seti ile Evrişimsel Sinir Ağı eğitilmiştir. Bu eğitim sonucunda tüm veriler ile %93, test verileri ile %79 başarı ile hareket sınıflandırması gerçekleştirilmiştir.Publication Open Access Neural network and IoT-based test maneuver deployment for 2 DoF vehicle simulator(2023-05-15) DEMİR, UĞUR; AKGÜN, GAZİ; YILDIRIM, ALPER; AKÜNER, MUSTAFA CANER; DEMİRCİ B., DEMİR U., AKGÜN G., YILDIRIM A., AKÜNER M. C., ÖZKAN M.This paper presents the driving scenarios deployment for 2 DoF (Degree of Freedom) vehicle simulator based on IoT (Internet of Things) and Neural Network. The controller structure is chosen as Neural Network-based controller is preferred as the transferring appropriate accelerations in 3 axes in the 2 DoF manipulator evokes a nonlinear problem. Due to the microcontroller used in the vehicle simulator to perform Neural Network calculations has limited processing capacity and speed, IoT-based computing and data transferring are chosen. Firstly, an open-loop measurement is performed to identify the vehicle simulator and to generate the training data for the neural network. Thereafter the acceleration data on the axes and the control signals are logged. Secondly, the neural network training is carried out with the logged data. Finally, the trained neural network was tested with various driving maneuvers. And the measurements are evaluated.