Person:
DEMİRCİ, SELİM

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

DEMİRCİ

First Name

SELİM

Name

Search Results

Now showing 1 - 2 of 2
  • Publication
    Influence of electrolyte composition on the microstructure and photocatalytic activity of TiO2 nanostructures
    (SPRINGER) DEMİRCİ, SELİM; Yilmaz, Ozan; Ebeoglugil, Faruk; Demirci, Selim; Dikici, Tuncay
    In this study, titanium dioxide (TiO2) nanostructures were produced on pure titanium in different electrolytes at constant voltage of 20 V for 30 min. The crystallographic structure, surface morphology, and optical properties of the films were investigated by XRD, SEM, and UV-vis spectrum, respectively. The wettability of the samples was determined by contact angle measurement equipment. The photocatalytic properties of the TiO2 films were tested by the degradation of a methylene blue (MB) as the model reaction under UV light irradiation. The results showed that the electrolyte composition can play an important role in the surface morphology of nanostructured TiO2 films and therefore on various properties such as optics, electronics, sensing, and degradation. The SEM images of the samples demonstrated that surface morphology was directly affected by the electrolyte composition. It is known that the surface area is a dominant factor affecting the photocatalytic activity of a porous TiO2 layer prepared by anodic oxidation. The TiO2 film (sample C) anodized in 1 M Na2SO4 containing 5 wt.% NH4F exhibited better photocatalytic performance as compared to the other oxide films. This is because a higher surface area with dense pore structure favors more photocatalytic active areas. The photocatalytic degradation efficiency of MB using sample C was reached to 92.35% and rate constant 5.92 x 10(-3), respectively. Moreover, this sample showed lowest band gap energy that was almost 3.167 eV. We believe that new anodic TiO2 nanoporous structures are highly promising in photocatalytic decomposition of water and pollutants elimination.
  • Publication
    Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances
    (ELSEVIER SCIENCE BV, 2018) SARIOĞLU, CEVAT; Demirci, Selim; Yurddaskal, Metin; Dikici, Tuncay; Sanoglu, Cevat
    In this work, iodine (1) doped hollow and mesoporous Fe2O3 photocatalyst particles were fabricated for the first time through sol-gel method. Phase structure, surface morphology, particle size, specific surface area and optical band gap of the synthesized Fe2O3 photocatalysts were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), BET surface analysis, particle size analyzer and UV-vis diffuse reflectance spectrum (UV-vis DRS), respectively. Also, electrochemical properties and photoluminescence spectra of Fe2O3 particles were measured. The results illustrated that high crystalline, hollow and mesoporous Fe2O3 particles were formed. The optical band gap values of the Fe203 photocatalysts changed between 2.104 and 1.93 eV. Photocatalytic efficiency of Fe2O3 photocatalysts were assessed via MB solution. The photocatalytic activity results exhibited that I doping enhanced the photocatalytic efficiency. 1% mole iodine doped (I-2) Fe2O3 photocatalyst had 97.723% photo degradation rate and 8.638 x 10(-2) min(-1) kinetic constant which showed the highest photocatalytic activity within 45 min. Moreover, stability and reusability experiments of Fe2O3 photocatalysts were carried out. The Fe2O3 photocatalysts showed outstanding stability after four sequence tests. As a result, I doped Fe2O3 is a good candidate for photocatalysts. (C) 2017 Elsevier B.V. All rights reserved.