Person:
TURANLI, BESTE

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

TURANLI

First Name

BESTE

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Repositioning of anti-inflammatory drugs for the treatment of cervical cancer sub-types
    (2022-06-01) TURANLI, BESTE; ARĞA, KAZIM YALÇIN; Kori M., ARĞA K. Y., Mardinoglu A., TURANLI B.
    Cervical cancer is the fourth most commonly diagnosed cancer worldwide and, in almost all cases is caused by infection with highly oncogenic Human Papillomaviruses (HPVs). On the other hand, inflammation is one of the hallmarks of cancer research. Here, we focused on inflammatory proteins that classify cervical cancer patients by considering individual differences between cancer patients in contrast to conventional treatments. We repurposed anti-inflammatory drugs for therapy of HPV-16 and HPV-18 infected groups, separately. In this study, we employed systems biology approaches to unveil the diagnostic and treatment options from a precision medicine perspective by delineating differential inflammation-associated biomarkers associated with carcinogenesis for both subtypes. We performed a meta-analysis of cervical cancer-associated transcriptomic datasets considering subtype differences of samples and identified the differentially expressed genes (DEGs). Using gene signature reversal on HPV-16 and HPV-18, we performed both signature- and network-based drug reversal to identify anti-inflammatory drug candidates against inflammation-associated nodes. The anti-inflammatory drug candidates were evaluated using molecular docking to determine the potential of physical interactions between the anti-inflammatory drug and inflammation-associated nodes as drug targets. We proposed 4 novels anti-inflammatory drugs (AS-601245, betamethasone, narciclasin, and methylprednisolone) for the treatment of HPV-16, 3 novel drugs for the treatment of HPV-18 (daphnetin, phenylbutazone, and tiaprofenoic acid), and 5 novel drugs (aldosterone, BMS-345541, etodolac, hydrocortisone, and prednisolone) for the treatment of both subtypes. We proposed anti-inflammatory drug candidates that have the potential to be therapeutic agents for the prevention and/or treatment of cervical cancer.
  • PublicationOpen Access
    Identification of Prognostic Biomarker Signatures and Candidate Drugs in Colorectal Cancer: Insights from Systems Biology Analysis
    (MDPI, 2019-01-17) TURANLI, BESTE; Rahman, Md Rezanur; Islam, Tania; Gov, Esra; Turanli, Beste; Gulfidan, Gizem; Shahjaman, Md; Banu, Nilufa Akhter; Mollah, Md Nurul Haque; Arga, Kazim Yalcin; Moni, Mohammad Ali
    Background and objectives: Colorectal cancer (CRC) is the second most common cause of cancer-related death in the world, but early diagnosis ameliorates the survival of CRC. This report aimed to identify molecular biomarker signatures in CRC. Materials and Methods: We analyzed two microarray datasets (GSE35279 and GSE21815) from the Gene Expression Omnibus (GEO) to identify mutual differentially expressed genes (DEGs). We integrated DEGs with protein-protein interaction and transcriptional/post-transcriptional regulatory networks to identify reporter signaling and regulatory molecules; utilized functional overrepresentation and pathway enrichment analyses to elucidate their roles in biological processes and molecular pathways; performed survival analyses to evaluate their prognostic performance; and applied drug repositioning analyses through Connectivity Map (CMap) and geneXpharma tools to hypothesize possible drug candidates targeting reporter molecules. Results: A total of 727 upregulated and 99 downregulated DEGs were detected. The PI3K/Akt signaling, Wnt signaling, extracellular matrix (ECM) interaction, and cell cycle were identified as significantly enriched pathways. Ten hub proteins (ADNP, CCND1, CD44, CDK4, CEBPB, CENPA, CENPH, CENPN, MYC, and RFC2), 10 transcription factors (ETS1, ESR1, GATA1, GATA2, GATA3, AR, YBX1, FOXP3, E2F4, and PRDM14) and two microRNAs (miRNAs) (miR-193b-3p and miR-615-3p) were detected as reporter molecules. The survival analyses through Kaplan-Meier curves indicated remarkable performance of reporter molecules in the estimation of survival probability in CRC patients. In addition, several drug candidates including anti-neoplastic and immunomodulating agents were repositioned. Conclusions: This study presents biomarker signatures at protein and RNA levels with prognostic capability in CRC. We think that the molecular signatures and candidate drugs presented in this study might be useful in future studies indenting the development of accurate diagnostic and/or prognostic biomarker screens and efficient therapeutic strategies in CRC.
  • Publication
    Tissue-Specific Molecular Biomarker Signatures of Type 2 Diabetes: An Integrative Analysis of Transcriptomics and Protein-Protein Interaction Data
    (MARY ANN LIEBERT, INC, 2015) TURANLI, BESTE; Calimlioglu, Beste; Karagoz, Kubra; Sevimoglu, Tuba; Kilic, Elif; Gov, Esra; Arga, Kazim Yalcin
    Type 2 diabetes mellitus is a major global public health burden. A complex metabolic disease, type 2 diabetes affects multiple different tissues, demanding a systems medicine approach to biomarker and novel diagnostic discovery, not to mention data integration across omics-es. In the present study, transcriptomics data from different tissues including beta-cells, pancreatic islets, arterial tissue, peripheral blood mononuclear cells, liver, and skeletal muscle of 228 samples were integrated with protein-protein interaction data and genome scale metabolic models to unravel the molecular and tissue-specific biomarker signatures of type 2 diabetes mellitus. Classifying differentially expressed genes, reconstruction and topological analysis of active protein-protein interaction subnetworks indicated that genomic reprogramming depends on the type of tissue, whereas there are common signatures at different levels. Among all tissue and cell types, Mannosidase Alpha Class 1A Member 2 was the common signature at genome level, and activation-ppara reaction, which stimulates a nuclear receptor protein, was found out as the mutual reporter at metabolic level. Moreover, miR-335 and miR-16-5p came into prominence in regulation of transcription at different tissues. On the other hand, distinct signatures were observed for different tissues at the metabolome level. Various coenzyme-A derivatives were significantly enriched metabolites in pancreatic islets, whereas skeletal muscle was enriched for cholesterol, malate, L-carnitine, and several amino acids. Results have showed utmost importance concerning relations between T2D and cancer, blood coagulation, neurodegenerative diseases, and specific metabolic and signaling pathways.
  • Publication
    Systems biomarkers for papillary thyroid cancer prognosis and treatment through multi-omics networks
    (ELSEVIER SCIENCE INC, 2022) TURANLI, BESTE; Gulfidan, Gizem; Soylu, Melisa; Demirel, Damla; Erdonmez, Habib Burak Can; Beklen, Hande; Sarica, Pemra Ozbek; Arga, Kazim Yalcin; Turanli, Beste
    The identification of biomolecules associated with papillary thyroid cancer (PTC) has upmost importance for the elucidation of the disease mechanism and the development of effective diagnostic and treatment strategies. Despite particular findings in this regard, a holistic analysis encompassing molecular data from different bio-logical levels has been lacking. In the present study, a meta-analysis of four transcriptome datasets was per -formed to identify gene expression signatures in PTC, and reporter molecules were determined by mapping gene expression data onto three major cellular networks, i.e., transcriptional regulatory, protein-protein interaction, and metabolic networks. We identified 282 common genes that were differentially expressed in all PTC datasets. In addition, six proteins (FYN, JUN, LYN, PML, SIN3A, and RARA), two Erb-B2 receptors (ERBB2 and ERBB4), two cyclin-dependent receptors (CDK1 and CDK2), and three histone deacetylase receptors (HDAC1, HDAC2, and HDAC3) came into prominence as proteomic signatures in addition to several metabolites including lactaldehyde and proline at the metabolome level. Significant associations with calcium and MAPK signaling pathways and transcriptional and post-transcriptional activities of 12 TFs and 110 miRNAs were also observed at the regulatory level. Among them, six miRNAs (miR-30b-3p, miR-15b-5p, let-7a-5p, miR-130b-3p, miR-424-5p, and miR-193b-3p) were associated with PTC for the first time in the literature, and the expression levels of miR-30b-3p, miR-15b-5p, and let-7a-5p were found to be predictive of disease prognosis. Drug repositioning and molecular docking simulations revealed that 5 drugs (prochlorperazine, meclizine, rottlerin, cephaeline, and tretinoin) may be useful in the treatment of PTC. Consequently, we report here biomolecule candidates that may be considered as prognostic biomarkers or potential therapeutic targets for further experimental and clinical trials for PTC.