Person: ÜLKÜ, EYÜP EMRE
Loading...
Email Address
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
ÜLKÜ
First Name
EYÜP EMRE
Name
5 results
Search Results
Now showing 1 - 5 of 5
Publication Open Access Classification of hazelnuts with CNN based deep learning system(2022-12-01) ÜLKÜ, EYÜP EMRE; YILDIZ, KAZIM; GÜNEŞ E., ÜLKÜ E. E., YILDIZ K.The rapid development of technology leads to the emergence of technology-based systems in many different areas. In recent years, agriculture has been one of these areas. We come across technological systems in agricultural applications for many different purposes such as growing healthier products, increasing the yield of products, and predicting product productivity. Today, technology-based systems are used more and more widely in agricultural applications. Classification of products quickly and with high accuracy is a very important process in predicting product yield. In this study, it is suggested to use the CNN-based deep learning model VGG16 in order to classify the hazelnut fruit, which is an important agricultural product. The main purpose is to classify hazelnuts according to their quality with a deep learning approach. For that, a new data set was created. There are 15770 images in the created data set. In the study, the data set was used by dividing it into different parts. The classification of hazelnut images was carried out using the VGG16 deep learning model, which is a powerful model for classifying images. As a result of the experiments on the data set created, the classification process of hazelnuts was realized with 0,9873 F1 score. The detection rate of quality hazelnut is 0.9848, the rate of detection of kernel hazelnut is 0.9891 and the rate of detection of damaged hazelnut is 0.9882. In addition, the classification process was carried out with deep learning using 50%, 25% and 10% of the data set in the study. It was observed that the 98.73 %, 95.46 %, 92.62 %, and 88.42 % accuracy rates were achieved when the whole, 50 %, 25 %, and 10 % data sets were used, respectivelyPublication Open Access du-CBA: veriden habersiz ve artırımlı sınıflandırmaya dayalı birliktelik kuralları çıkarma mimarisi(2023-01-01) BÜYÜKTANIR, BÜŞRA; YILDIZ, KAZIM; ÜLKÜ, EYÜP EMRE; Büyüktanır B., Yıldız K., Ülkü E. E., Büyüktanır T.İstemci sunucu sistemlerinde makine öğrenmesi modeli kullanılması bir ihtiyaçtır. Ancak istemcilerden verilerin toplanması, sunucuya aktarılması, makine öğrenmesi modeli eğitilmesi ve bu modelin istemcilerde çalışan cihazlara entegre edilmesi bir çok problemi beraberinde getirmektedir. Verilerin istemcilerden sunucuya transferi ağ trafiğine sebep olmakta, fazla enerji gerektirmekte ve veri mahremiyetini istismar edilebilmektedir. Çalışma kapsamında, bahsedilen problemlere çözüm için federe öğrenme mimarisi kullanılmaktadır. Mimariye göre, her bir istemcide istemcinin kendi verilerinden makine öğrenmesi modeli eğitilmektedir. Her bir istemcide eğitilen modeller sunucuya gönderilmekte ve sunucuda bu modeller birleştirilerek yeni bir model oluşturulmaktadır. Oluşturulan nihai model tekrar istemcilere dağıtılmaktadır. Bu çalışmada Veriden Habersiz İlişkili Kurallara Dayalı Sınıflandırma (Data Unaware Classification Based on Association, du-CBA) olarak adlandırılan ilişkisel sınıflandırma algoritması geliştirilmiştir. Federe öğrenme ile klasik öğrenme mimarilerini karşılaştırıp başarılarını ölçmek için çalışma kapsamında benzetim ortamı oluşturulmuştur. Benzetim ortamında du-CBA ve CBA algoritmaları kullanılarak modeller eğitilmiş ve sonuçlar kıyaslanmıştır. Modellerin eğitiminde University of California Irvine (UCI) veri havuzundan alınan beş veri seti kullanılmıştır. Deneysel sonuçlar, her bir veri seti için federe öğrenme ile eğitilen modellerin, klasik öğrenme ile eğitilen modellerle neredeyse aynı doğruluğu elde ettiğini ama eğitim sürelerinin yaklaşık %70 oranında azaldığını göstermiştir. Sonuçlar geliştirilen algoritmanın başarıya ulaştığını ortaya koymaktadır.Publication Open Access Fault detection of fabrics using image processing methods(PAMUKKALE UNIV, 2017) ÜLKÜ, EYÜP EMRE; Yildiz, Kazim; Demir, Onder; Ulku, Eyup EmreThis paper presents a computer aided detection (CAD) system which uses wiener filter based approach for detection of defects in poplin fabric. The defective fabric images are taken with the help of the digital camera. The developed system consists of three phases, including preprocessing, segmentation and detection of fabric defect In preprocessing phase, a RGB to gray level conversion and image enhancement operations were applied to digital camera images. In segmentation phase, background of the gray level image segmented using morphologic operations. Then, segmented image was converted to binary image to facilitate fabric defect detection process. Fabric defect detection was performed using wiener filter in the detection phase of the system. Wiener filter is applied to binary level image to eliminate structures which are not defect The developed detection system applied on defective poplin images for detection. The obtained results on different kinds of fabric defects show that the proposed algorithm gives promising results.Publication Open Access Analysis and comparison of business intelligence tools most preferred by companies in Turkey(2023-06-01) YILDIZ, KAZIM; ÜLKÜ, EYÜP EMRE; ÖZDEMİR M., YILDIZ K., ÜLKÜ E. E.With the development of technology and the increase of the data sources, the size and variety of data collected from these sources has increased considerably. Thus, individuals and institutions have become able to store more data. However, it has become an important need to make meaning from this large and valuable data and transform into information and has become more complex. Business intelligence applications ensure that different types of data collected from different data sources are clustered and separated in a certain order and it provides the creation of reports by establishing a semantic relationship between these stored data. The aim of this study is identifying the business intelligence tools preferred by companies in Turkey. It is also aimed to give ideas to institutions and individual users so that they can choose the right business intelligence tool. Within the scope of the study, first of all, the general definition of business intelligence and the business intelligence applications preferred by the companies in Turkey in recent years are mentioned. Afterwards, the information obtained from the scanned scientific studies are analyzed and the findings are presented and then these tools were compared with the tables and it was aimed to give an idea to individuals and institutions. Scientific studies are very important in terms of revealing the current status of these business intelligence tools and seeing what kind of studies they can be used in the future.Publication Metadata only Raspbraille: Conversion to braille alphabet with optical character recognition and voice recognition algorithm(2022-01-01) YILDIZ, KAZIM; ÜLKÜ, EYÜP EMRE; BÜYÜKTANIR, BÜŞRA; DALIP F., YILDIZ K., ÜLKÜ E. E. , BÜYÜKTANIR B.